An alternative cycle proposed for refrigeration and gas liquefaction is active magnetic regenerator (AMR) refrigeration. This technology relies on solid materials exhibiting the magnetocaloric effect, a nearly reversible temperature change induced by a magnetic field change. AMR refrigeration devices have the potential to be more efficient than those using conventional refrigeration techniques but, for this to be realized, optimum materials, regenerator design, and cycle parameters must be determined. This work focuses on the development and validation of a transient one-dimensional finite element model of an AMR test apparatus. The results of the model are validated by comparison to room temperature experiments for varying hot heat sink temperature, system pressure, and applied heat load. To demonstrate its applicability, the model is then used to predict the performance of AMRs in situations that are either time-consuming to test experimentally or not physically possible with the current test apparatus.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:BVIV.1828/69 |
Date | 10 August 2006 |
Creators | Dikeos, John |
Contributors | Rowe, Andrew |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English, English |
Detected Language | English |
Type | Thesis |
Format | 801387 bytes, application/pdf |
Rights | Available for the World Wide Web |
Page generated in 0.0019 seconds