Return to search

Weak Solutions to Mathematical Models of the Interaction between Fluids, Solids and Electromagnetic Fields / Schwache Lösungen für mathematische Modelle der Wechselwirkung zwischen Flüssigkeiten, Festkörpern und elektromagnetischen Feldern

We analyze the mathematical models of two classes of physical phenomena. The first class of phenomena we consider is the interaction between one or more insulating rigid bodies and an electrically conducting fluid, inside of which the bodies are contained, as well as the electromagnetic fields trespassing both of the materials. We take into account both the cases of incompressible and compressible fluids. In both cases our main result yields the existence of weak solutions to the associated system of partial differential equations, respectively. The proofs of these results are built upon hybrid discrete-continuous approximation schemes: Parts of the systems are discretized with respect to time in order to deal with the solution-dependent test functions in the induction equation. The remaining parts are treated as continuous equations on the small intervals between consecutive discrete time points, allowing us to employ techniques which do not transfer to the discretized setting. Moreover, the solution-dependent test functions in the momentum equation are handled via the use of classical penalization methods.

The second class of phenomena we consider is the evolution of a magnetoelastic material. Here too, our main result proves the existence of weak solutions to the corresponding system of partial differential equations. Its proof is based on De Giorgi's minimizing movements method, in which the system is discretized in time and, at each discrete time point, a minimization problem is solved, the associated Euler-Lagrange equations of which constitute a suitable approximation of the original equation of motion and magnetic force balance. The construction of such a minimization problem is made possible by the realization that, already on the continuous level, both of these equations can be written in terms of the same energy and dissipation potentials. The functional for the discrete minimization problem can then be constructed on the basis of these potentials. / Wir analysieren die mathematischen Modelle von zwei Arten physikalischer Phänomene. Die erste Art von Phänomenen, die wir betrachten, ist die Wechselwirkung zwischen einem oder mehreren isolierenden starren Körpern und einem elektrisch leitenden Fluid, das die Körper umgibt, sowie den elektromagnetischen Feldern in beiden Materialien. Wir untersuchen sowohl den Fall inkompressibler als auch kompressibler Fluide. In beiden Fällen liefert unser Hauptresultat die Existenz von schwachen Lösungen für das zugehörige System partieller Differentialgleichungen. Die Beweise dieser Resultate beruhen auf hybriden diskret-kontinuierlichen Approximationsmethoden: Teile der Systeme werden in der Zeit diskretisiert, um das Problem der lösungsabhängigen Testfunktionen in der Induktionsgleichung zu bewältigen. Die verbleibenden Gleichungen werden als kontinuierliche Gleichungen auf den kleinen Intervallen zwischen aufeinanderfolgenden diskreten Zeitpunkten behandelt, sodass wir Techniken anwenden können, die sich nicht auf das diskretisierte System übertragen lassen. Darüber hinaus wird das Problem der lösungsabhängigen Testfunktionen in der Impulsgleichung durch die Verwendung klassischer Penalisierungsmethoden gelöst. Die zweite Art von Phänomenen, die wir betrachten, ist die Entwicklung eines magnetoelastischen Materials. Auch hier beweist unser Hauptresultat die Existenz schwacher Lösungen für das zugehörige System partieller Differentialgleichungen. Der Beweis basiert auf der Methode von De Giorgi, bei der das System in der Zeit diskretisiert und in jedem diskreten Zeitpunkt ein Minimierungsproblem gelöst wird, dessen zugehörige Euler-Lagrange-Gleichungen eine geeignete Approximation an die ursprüngliche Bewegungsgleichung und mikromagnetische Gleichung darstellen. Die Konstruktion eines solchen Minimierungsproblems wird durch die Erkenntnis ermöglicht, dass diese beiden Gleichungen bereits im kontinuierlichen System mithilfe derselben Energie- und Dissipationspotenziale ausgedrückt werden können. Das Funktional für das diskrete Minimierungsproblem kann dann auf Grundlage dieser Potenziale konstruiert werden.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:34920
Date January 2024
CreatorsScherz, Jan
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://creativecommons.org/licenses/by/4.0/deed.de, info:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds