Return to search

STUDY OF PHASE TRANSITION AND MAGNNETOCALORIC EFFECT FOR THE SYSTEM Ni-Mn-In-Bi

AN ABSTRACT OF THE THESIS OFABHIYAN OLI, for the Master of Science degree in Applied Physics, presented on August 10, 2023 at Southern Illinois University Carbondale. TITLE: STUDY OF PHASE TRANSITION AND MAGNNETOCALORIC EFFECT FOR THE SYSTEM Ni-Mn-In-Bi MAJOR PROFESSOR: Dr. Saikat Talapatra We experimentally investigate the Heusler alloys Ni50Mn35In12Bi3 and Ni47Mn35In15Bi3 on their different magnetic properties: structural, magnetic, magnetocaloric and magnetotransport properties by using room-temperature X-ray diffraction (XRD), and magnetization measurements in the temperature interval of 10 -380K and field up to 5T. This alloys shows both high temperature austenite phase (AP) and martensite phase (MP). The alloy Ni47Bi3Mn35In15 crystallize in primitive Cubic structure with space group Fm-3m and Ni50Mn35In12Bi3 with the crystal structure of Tetragonal L21 type with space group I4-3m. Alloy Ni47Bi3Mn35In15 show two phase transition FOPT from Ferrimagnetic/AFM to FM and SOPT from FM to PM towards higher temperature and its result will be discussed here mainly. The martensitic transition (TM) takes place around 200K and Curie temperature (TC) 313K in presence of 100Oe field. The saturation magnetization (Ms) at 10K was found to be increasing at lower field and stabilized at higher field indicating ferromagnetic behavior. The Ni47Bi3Mn35In15 shows high magnetocaloric effects (ΔSM = -47.36 Jkg-1K-1) and Relative Cooling Power (RCP = 222.12 J/Kg) in the vicinity of its Curie temperature (TC =313K). Magnetotransport measurement is done by using a standard four-probe method from 10-380 K temperature in presence of zero field and 50 kOe field.

Identiferoai:union.ndltd.org:siu.edu/oai:opensiuc.lib.siu.edu:theses-4198
Date01 December 2023
CreatorsOli, Abhiyan
PublisherOpenSIUC
Source SetsSouthern Illinois University Carbondale
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses

Page generated in 0.002 seconds