Les molécules-aimants sont des complexes moléculaires contenant des ions des métaux de transition ou des lanthanides capables de présenter le phénomène de blocage de l’aimantation en dessous d’une température de blocage Tb. Ce blocage est dû à la présence d’une barrière d’énergie de réorientation de leur aimantation à cause de la présence d’une anisotropie magnétique uniaxiale qui conduit à la présence de deux états stables de l’aimantation.Ces deux états stables sont adressables avec un champ magnétique extérieur. Il est donc,théoriquement, envisageable d’utiliser ces molécules comme unités de base pour le stockage « classique » de l’information.Néanmoins, à cause de la nature quantique des molécules, une relaxation entre les deux états de l’aimantation a lieu à basse température par effet tunnel à travers la barrière d’énergie. Cet effet tunnel a plusieurs causes dont une correspondant à une légère déviation de l’anisotropie magnétique de la situation strictement axiale. Cet effet annule le caractère bistable (classique) des molécules les rendant inutilisables comme bits classiques pour le stockage de l’information. Mais, la présence de l’effet tunnel conduit à une situation particulière à basse température où deux niveaux sont présents séparés par une énergie liée au caractère non axiale (rhombique) de l’aimantation (cas où le spin est entier). Un système à deux niveaux est appelé bit quantique(qubit) et constitue l’unité de base pour la construction d’ordinateurs quantiques si plusieurs conditions sont réunies.Ainsi, pour concevoir des bits classiques ou quantiques, il est indispensable comprendre au niveau microscopique la nature de l’anisotropie magnétique et les facteurs qui l’influencent.Ce travail de thèse est consacré à l’étude théorique de la nature de l’anisotropie magnétique dans des complexes mononucléaires et binucléaires de Ni(II) (S = 1)et de Co(II) (S = 3/2). Des calculs de type ab initio, basés sur la théorie de la fonction d’onde,qui permettent d’extraire les paramètres de l’hamiltonien de spin de l’anisotropie magnétique ont été effectués. Des calculs sur des objets modèles et molécules réelles qui permettent de séparer l’effet des différents paramètres structuraux et électroniques des ligands sur la nature et l’amplitude de l’anisotropie magnétique ont aussi été réalisés.La comparaison entre les calculs sur des complexes modèles et sur des complexes réels permet de rationaliser les propriétés magnétiques des complexes réels et surtout de proposer des stratégies pour la synthèse de nouveaux complexes avec les propriétés souhaitées. L’étude de complexes binucléaires qui peuvent être considérés comme la première étape pour la conception de porte logique quantique a été réalisée. Les calculs sur les complexes binucléaires sont réalisés en fragmentant les molécules en deux espèces mononucléaires. Pour les complexes binucléaires de Ni(II) et Co(II), des calculs de type Density Functional Theory (DFT) pour évaluer l’amplitude et la nature de l’interaction d’échange ont été menés. Pour étudier l’influence d’une perturbation extérieure sur les propriétés magnétiques, l’influence d’un champ électrique placé parallèle et perpendiculaire à l’axe de facile aimantation d’un complexe de Ni(II) a été étudiée. Le champ électrique peut influencer les propriétés d’anisotropie de manière importante ouvrant la possibilité à la manipulation des molécules par cette perturbation. / Single molecule magnets are molecular complexes containing transition metal or lanthanides ions which are able to block their magnetization below a certain blocking temperature Tb. This blocking is caused by an energy barrier separating the two orientations of magnetization leading to two stable magnetization states. These two states can be controlled by an external magnetic field.Therefore, it is theoretically possible to use these molecules as bits which are able to store“classical” information. However, due to the quantum nature of these molecules, the relaxation of magnetization can exist even at low temperatures. This phenomenon is called the quantum tunneling effect and prevents the bistable (classical) behavior of the magnetic properties, as well as their use as classical bits for data strorage.Yet, the quantum tunneling of the magnetization also leads to a particular situation at a low temperature where two levels are separated by an energy related to the non-axial character(rhombic) of the magnetization (when the spinis an integer). Such two-levels system could be used as a quantum bit (qbit) which is the basic unit for quantum information processing. Thus,the design of classical or quantum bits require a precise understanding of magnetic properties and their origin at a microscopic level.The Ph.D work was devoted to the theoretical study of the magnetic anisotropy in mononuclear and binuclear Ni(II) (S=1) and Co(II) (S=3/2) complexes. Ab initio calculations based on the wave function theory were carried out and the spin Hamiltonian parameters were extracted. Model complexes were used to investigate the structural and electronic parameters causing magnetic anisotropy.Calculations were, also, performed on complexes synthesized in the laboratory.Comparison between real and model complexes allowed rationalizing the magnetic properties and imagining new synthesis strategies leading to the desired magnetic properties. Binuclear complexes that can be considered as double qbits and used to build quantum logic gates were also investigated. The calculations were performed by fragmenting the binuclear complexes into two mononuclear units in order to study the local anisotropy of each metal ion.The exchange interaction was investigated using Density Functional theory (DFT). In order to study the influence of an external perturbation on magnetic properties, the magnetic properties of a mononuclear Co(II) complex under an external electric field applied parallel or perpendicular to the axis of easy magnetization were calculated. The application of an electric field can lead to important modifications of magnetic properties. Thereby, offering the possibility to the manipulation of these molecules by external electric fields.
Identifer | oai:union.ndltd.org:theses.fr/2018SACLS070 |
Date | 27 March 2018 |
Creators | Cahier, Benjamin |
Contributors | Université Paris-Saclay (ComUE), Mallah, Talal, Guihery, Nathalie |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0025 seconds