Cette thèse est consacrée à la simulation d'écoulements turbulents, incompressibles ou à faible nombre de Mach pour des applications touchant à la sûreté nucléaire. En particulier, nous nous concentrons sur le développement et l'analyse mathématique de schémas numériques performants pour la méthode dite de Simulation des Grandes Echelles. Ces schémas sont basés sur des méthodes à pas fractionnaires de type correction de pression et des éléments finis non conformes de bas degré. Deux arguments semblent essentiels à la construction de tels schémas: le contrôle de l'énergie cinétique et la précision pour des écoulements à convection dominante. Concernant la discrétisation en temps, nous proposons un schéma de type Crank-Nicolson et nous montrons qu'il satisfait un contrôle de l'énergie cinétique. Ce schéma présente de plus l'avantage d'être peu dissipatif numériquement (résidu d'ordre deux en temps). Concernant le défaut de précision de la discrétisation par l'élément fini de Rannacher-Turek, nous envisageons deux approches. La première consiste à construire un schéma pénalisé contraignant les degrés de liberté tangents aux faces des cellules à s'écrire comme combinaison linéaire des degrés de liberté normaux alentour. La deuxième approche repose sur l'enrichissement de l'espace discret d'approximation pour la pression. Enfin, différents tests numériques sont présentés en dimensions deux et trois et pour des maillages généraux, afin d'illustrer les capacités des schémas étudiés et de confronter les résultats théoriques et expérimentaux.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00766722 |
Date | 03 December 2012 |
Creators | Dardalhon, Fanny |
Publisher | Aix-Marseille Université |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0037 seconds