Maize (Zea mays L.) yields in the smallholder (SH) farming sector in Southern Africa have remained low. despite the availability of many improved varieties. Among the major constraints contributing to tow yields and threatening food security in the region are diseases which include grey leaf spot (GLS). common rust, northern corn leaf blight (NLB) and Phaeosphaeria leaf spot (PLS). These diseases are highly unpredictable in their occurrence every season, making them difficult to control. In addition, the majority of SH farmers cannot afford to control the diseases due to limited access to chemicals. Therefore, maize cultivars with high levels of disease resistance and tolerance to abiotic stresses would provide a long-term solution to addressing the problem of low yields, especially in the smallholder-farming sector. The objectives of this study were therefore to: i) establish farmers' perceptions on diseases, key limiting production constraints and preferred traits of maize cultivars. ii) screen germplasm adapted to tropical environments for resistance to PLS, iii) determine gene action for resistance to PLS and GLS, iv) estimate combining ability effects for resistance to PLS, GLS, NLB and common rust diseases, and v) determine grain yield stability of F, hybrids derived from crosses among selected tropical advanced maize inbred lines. These studies were conducted from 2006/7 to 2008/9 seasons at various sites in South Africa, Zimbabwe, Zambia and Uganda. Structured surveys and participatory rural appraisal (PRA) conducted in Obonjaneni. Busingatha and Okhombe villages of Amazizi district in the Northern Drakensberg established maize as the principal crop grown in the area. All the farmers who participated grew the local variety (landrace) they called Natal-8- row or Is/Zulu. The adoption of hybrids and improved open pollinated varieties (OPVs) was tow. Farmers preferred the local variety ahead of hybrids and improved OPVs mainly for its taste, tolerance to abiotic stresses and yield stability. Characteristics of maize varieties preferred by the farmers included: inexpensive seed, high yield, early maturity and tow input costs. Pests/d is eases and drought were not ranked highly, as farmers planted early to escape diseases and drought. Abiotic stresses were amongst the top four constraints faced by the farmers. The local varieties exhibited high yield potential and genetic variability fordisease resistance. Evaluation of maize germplasm adapted to tropical and subtropical environments of Africa for PLS resistance indicated significant (PS0.05) variation among the inbreds. populations and hybrids. In general, 63% of the inbreds/populations were resistant to PLS. Regionally important inbred lines; SC and N3 and CIMMYT's most successful lines such as CML395. CML444. CML202. CML312. and CML488 were resistant to PLS. Fifty- four percent of the single-cross experimental hybrids were also resistant to PLS. Correlation coefficients for area under disease progress curve (AUDPC) values for disease severity with PLS final disease severity scores were significant (P<0.001) and positive, implying that ranking of the genotypes for AUDPC and final PLS disease severity score was by and large similar. Forty five F, hybrids generated by crossing ten advanced maize inbred lines in a half diallel mating scheme were evaluated in two to six environments to determine combining ability, gene action and heterosis estimates for grain yield and resistance to PLS. GLS. NLB and common rust diseases. Highly significant (PS0.001) general combining ability (GCA) and specific combining ability (SCA) effects were observed for PLS. GLS. NLB. common rust, grain yield and other agronomic traits. The GCA effects were more important than SCA effects, indicating the predominance of additive over non-additive gene action for all the traits studied in these inbred lines. The inbred lines with good GCA for PLS resistance were: A12204, N3. A16. MP18 and CML488. and for GLS resistance were A1220-4. CZL00009. CZL00001. CML205 and CML443. Lines A16 and CML443 had good GCA for NLB and common rust resistance, lines A1220-4, N3, CML205, A16, and CML443 contributed towards high yield. Lines A1220-4 and A16 were late maturing, whereas CZL00009 displayed eariy maturity. High mid-parent and better-parent heterosis for high grain yield and resistance to all the diseases were observed. Generation mean analysis was used to deteimine the inheritance of PLS and GLS resistance in populations involving six tropical advanced maize inbred lines. Reciprocal crosses and backcross progenies were generated among inbreds A1220-4, A15, B17 (resistant. R), CML445 (moderately resistant. MR). CML441 and CZL00001 (susceptible. S) for PLS inheritance, and among inbreds A1220-4. A15, CML441 (resistant. R). and N3 and B17 (susceptible. S), for GLS inheritance. Results indicated highly significant additive effects (P<0.001) for PLS and GLS resistance, with dominance effects accounting forSH%of the variation in all the crosses for PLS and only A15 x B17 cross for GLS. Epistasis and cytoplasmic gene effects in favour of PLS resistance in F, crosses when the more susceptible parent was used as female were significant. For GLS resistance, epistasis was observed only in CML441 x N3 and A1220-4 x B17 crosses, while no cytoplasmic gene effects were detected. Resistance for PLS was medium to highly heritable and conditioned by less than four genes which exhibited incomplete dominance. In general resistance to GLS was controlled by two to three genes exhibiting zero to partial dominance and was moderate to highly heritable. Stability analysis of the hybrids was done over 11 environments using the additive main effects and multiplicative interaction (AMMI) and the genotype and genotype by environment (GGE) biplot analyses. Both AMMI and GGE biplot analyses selected hybrids H21 (CZL00009 x A16). H14 (A1220-4 x A16). S63 (SeedCo hybrid check). N72 (MP72/N3) and H26 (CZL00001 x A16) as stable and high yielding. Hybrids H1 (CML445 x A1220-4), H44 (CZL00009 x CML443) and H18 (CZL00009 x CZL00001) were identified by both methods as unstable but high yielding. AMMI and GGE biplot analyses identified ZAM08, C108, RAO9 and C09 as the most representative environments which were high yielding and relatively stable. In general, the study has revealed that based on the farmers ranking of the constraints in their area, breeding opportunities do exist for incorporating tolerance to both biotic and abiotic stresses in their varieties. It also identified maize lines resistant to the main foliar diseases, with good combining ability and heterosis for resistance and high grain yield. Hybrids with wide adaptation and high yields across environments were also observed. The experimental hybrids that exhibited high levels of resistance can be recommended for further testing and release. On the whole, highly significant additive effects and moderate to high heritability estimates observed for all the diseases and grain yield implied progress would be made through selection, although significant epistasis and dominance could slow progress. Dominance effects towards resistance and high yield could be exploited in developing single cross maize hybrids among these inbreds when only one parent is resistant. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2009.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:ukzn/oai:http://researchspace.ukzn.ac.za:10413/8136 |
Date | January 2009 |
Creators | Sibiya, Julia. |
Contributors | Tongoona, Pangirayi., Derera, John. |
Source Sets | South African National ETD Portal |
Language | en_ZA |
Detected Language | English |
Type | Thesis |
Page generated in 0.0027 seconds