Return to search

Modulation of macrophage nitric oxide production by hemozoin

Malaria is one of the most serious human infectious diseases. To date, the collection of studies suggest that the disease is determined by transmission dynamics and host age altogether with host genetics and immunological responses. The precise and direct contribution of parasite components to the activation of such immunological responses has not been fully unravelled. In addition to a role proposed for plasmodial GPI, different lines of evidence suggest that hemozoin (HZ) could also be a potential inflammatory agent. The role of HZ in the modulation of immune responses has remained a polemic subject, making it difficult to describe the contribution of this molecule in pathogenesis of malaria. However, our previous laboratory studies, suggest that HZ has a pro-inflammatory role. For this reason, our study was designed to further define the contribution of HZ to the pro-inflammatory events related to malaria immunopathology, and to identify the intracellular signals underlying the up-regulatory effects of HZ in the macrophage, one of the major sources of inflammatory mediators in malaria. In order to do that, we used a chemically characterized synthetic version of the native PfHZ, rcHZ; and evaluated its effects on macrophage nitric oxide (NO) production. Our first approach was to compare the effects of rcHZ with other morphologically different versions of this molecule (aHZ and scHZ) alone or in combination with IFN-gamma on macrophage NO production. In a second approach, we evaluated if the presence of serum proteins plays a role in the increased IFN-gamma induced-NO production by rcHZ. In the third part of our study, we explored if rcHZ is able to increase NO production by macrophages when incubated in combination with a molecule from another pathogen, such as gram-negative bacteria lipopolysaccaride (LPS). The present study is a functional study that uses a synthetic and morphologically identical version of the native PfHZ. Our results suggests that intrinsic physical characteristics, such as shape and size; presence of host serum proteins, and presence of other pathogenic molecules, are important determinants for the macrophage response to HZ in the context of NO production. Besides, it describes part of the signaling pathways that are involved, which may contribute in the future, not only to understand mechanisms of regulation; but also, to find new therapeutic targets against malaria.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.100786
Date January 2007
CreatorsContreras, Ana Paulina.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Institute of Parasitology.)
Rights© Ana Paulina Contreras, 2007
Relationalephsysno: 002614429, proquestno: AAIMR32682, Theses scanned by UMI/ProQuest.

Page generated in 0.0099 seconds