Return to search

The evolution of Maldivian coral reef rim islands

The first detailed investigation of Maldivian rim island development and reef-to-island connectivity is presented. Study sites were selected on windward and leeward rim aspects of Huvadhu Atoll, and analyses were undertaken at a millennial, contemporary and near-future temporal scales. At millennial temporal scales, contrasting models of island development were presented for the windward and leeward sites. Marked between-site differences were found in the timings of island initiation (2,800-2,000 cal. yr. B.P. and 4,200-3,600 cal. yr. B.P. at the windward and leeward sites respectively). Hence, sea-level does not represent the sole control upon island formation. The period of island initiation and heightened mobility occurred during the mid-Holocene sea-level highstand. Future sea-level rise may thus reactivate the process regime responsible for reef island initiation, potentially inducing further island building and/or heightened island mobilisation. Contemporary analyses highlighted the homogeneity of the sediment reservoir across marine, beach and island sediments. Specifically, sand-grade coral was dominant across all samples within both sites (>50%). The most likely source of sand-grade coral is excavator parrotfish, which was consistent with ecological survey-based estimates of sediment production (excavator parrotfish accounted for 72.8% and 68.2% of sediment production at the windward and leeward sites). The highest sediment production rates were found within the lagoonward environments (59.4% and 75.4% at the windward and leeward sites), which is consistent with the more recent lateral lagoonward mode of island building. With regard to near-future analyses, the apparent recent areal expansion of seagrass beds demonstrated the capacity of ecological changes to cause shifts in sediment production budgets (contributing an additional ~243 tonnes yr-1 of sediment on the leeward rim platform). In addition, significant increases in benthic sediment mobility were found at both study sites under sea-level rise scenarios. Increases in mobility were markedly larger in magnitude at the leeward site than at the windward site. A challenge for the adaptive capacity of atoll nations is thus to acknowledge this atoll-scale diversity in future management strategies.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:732671
Date January 2017
CreatorsEast, Holly Kate
ContributorsPerry, Chris ; Kench, Paul
PublisherUniversity of Exeter
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/10871/30860

Page generated in 0.0023 seconds