Return to search

MECHANISMS OF METHOTREXATE SECRETION AND DETOXIFICATION BY MALPIGHIAN TUBULES OF DROSOPHILA MELANOGASTER

<p>Insects are continually exposed to potentially toxic endogenous compounds and xenobiotics that require rapid elimination from the body. Xenobiotic resistance in insects has evolved predominantly by increasing the activity of detoxification enzymes and/or by increasing toxin excretion via the Malpighian (renal) tubules. The tubules have long been known to transport organic anions at high rates. This thesis examines the mechanisms of excretion and detoxification of the organic anion methotrexate (MTX) by isolated tissues of the fruit fly <em>Drosophila melanogaster</em>. A radioisotope tracer technique and the Ramsay assay were used to measure MTX secretion. Quantitative PCR (qPCR) was used to evaluate the expression of the genes for putative organic anion transporters. My results show that MTX transport across the Malpighian tubule epithelium is active, saturable, Na<sup>+</sup>-independent and inhibited by a wide range of organic anions including MK-571, probenecid and Texas Red. Pharmacological studies and qPCR analyses suggest multiple transporters are involved in the movement of MTX across the Malpighian tubules. Moreover, chronic exposure of larvae to dietary MTX or salicylate dramatically increases the transepithelial transport of MTX by isolated Malpighian tubules, suggesting that excretion of MTX is upregulated by exposure to these organic anions in the diet. In addition, treatments known to increase expression of specific detoxification enzymes, such as the P450 monoxygenases (P450s) and the glutathione-S-transferases (GSTs), also led to an increase in expression levels of multidrug efflux transporter (MET), multidrug resistance like protein 1 (dMRP) as well as to increased secretion of MTX by the tubules. This latter finding suggests a coordinated response to toxin exposure, so that when detoxification pathways are increased, there is a corresponding increase in the capacity for elimination of the products of P450 and GST enzymes. Finally, the last section of this thesis has shown that RNAi knockdown of a single organic anion transporter gene in the principal cells of <em>D. melanogaster</em> Malpighian tubules is associated with reductions in the expression of multiple, functionally-related genes. Importantly, these results indicate that dMRP andMET are not the dominantMTX transporters in the tubules when flies are reared onMTX-enriched diets. However, reductions in the expression of organic anion transporting polypeptide (OATP) are associated with reduced secretion of the organic anionsMTX, fluorescein and Texas Red. Taken together, these results suggest that OATP and at least one additional transporter, as yet unidentified, are required forMTX secretion. In conclusion, the results of my research contribute to our understanding of the mechanisms of organic anion detoxification and excretion in flies exposed to dietary toxins.</p> / Doctor of Science (PhD)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/12088
Date10 1900
CreatorsChahine, Sarah S.
ContributorsO’Donnell, Michael J., McClelland, Grant, Wilson, Joanna, Biology
Source SetsMcMaster University
Detected LanguageEnglish
Typethesis

Page generated in 0.0022 seconds