This thesis began as an investigation into evolution of the platypus family (Ornithorhynchidae, Monotremata), now known from both Australia and South America. The thesis broadened its scope with inclusion of non-ornithorhynchid Mesozoic monotremes from Lightning Ridge, NSW. This change in direction brought an unexpected result: a fossil mammal from Lightning Ridge investigated for this thesis (presumed to be monotreme: Flannery et al., 1995) appears to be a new and unique type of mammal. Specimens were procured through Queensland Museum (Riversleigh material); Australian Museum (Lightning Ridge material); and Museum of Victoria and the South Australian Museum (fossil ornithorhynchids). Specimens were examined under a light microscope and scanning electron microscope; specimens were photographed using light photography and a scanning electron microscope; and illustrations and reconstructions were done with a camera lucida microscope attachment and photographic references. Parsimony analysis utilised the computer programs PAUP and MacClade. Major conclusions: 1) analysis and reconstruction of the skull of the Miocene platypus Obdurodon dicksoni suggest this robust, large-billed platypus was a derived northern offshoot off the main line of ornithorhynchid evolution; 2) the well-preserved skull of Obdurodon dicksoni shows aspects of soft anatomy previously unknown for fossil ornithorhynchids; 3) two upper molars from Mammalon Hill (Etadunna Formation, late Oligocene, central Australia) represent a third species of Obdurodon; 4) the South American ornithorhynchid Monotrematum sudamericanum from the Paleocene of Argentina is very close in form to the Oligocene-Miocene Obdurodon species from Australia and should be considered congeneric; 5) a revised diagnosis of the lower jaw of the Early Cretaceous monotreme Steropodon galmani includes the presence of two previously undescribed archaic features: the probable presence of postdentary bones and a meckelian groove; 6) morphological evidence is presented supporting a separate family Steropodontidae; and 7) analysis of new fossil material for Kollikodon ritchiei suggests that this taxon is not a monotreme mammal as originally identified but is a basal mammal with close relationships to allotherian mammals (Morganucodonta; Haramiyida). Kollikodon is provisionally placed as basal allotherian mammal (Allotheria sensu Butler 2000) and is unique at the ordinal level, being neither haramiyid nor multituberculate. A new allotherian order ??? Kollikodonta ??? is proposed.
Identifer | oai:union.ndltd.org:ADTP/233015 |
Date | January 2005 |
Creators | Musser, Anne Marie, School of Biological, Earth & Environmental Sciences, UNSW |
Publisher | Awarded by:University of New South Wales. School of Biological, Earth and Environmental Sciences |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Anne Marie Musser, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0053 seconds