Return to search

Pmma Carbon Nanotube Nanocomposite Foams for Energy Dissipation Applications

Nanomaterials have attracted a great deal of research efforts due to the potential unprecedented properties these materials may provide. Carbon nanotubes (CNTs) are of particular interest because of their exceptional mechanical, thermal and electrical properties. The purpose of this research is to develop poly (methyl methacrylate) (PMMA) carbon nanotubes (CNTs) nanocomposite foams with improved energy dissipation capabilities (toughness). PMMA CNTs nanocomposites were first synthesized by anti-solvent precipitation process (ASP). Nanocomposites with different CNTs concentrations were prepared. The dispersion of the CNTs in the polymer matrix was observed by scanning electron microscopy (SEM). Nanocomposite foams were prepared by a batch process using carbon dioxide as the foaming agent. The foaming was conducted from the retrograde phase that enabled high CO2 solubility and facilitated formation of foams of high bubble density and small bubble size. The effects of foaming temperature, foaming time and CNTs concentration on the foam expansion ratio was investigated. The morphology of the prepared foams was studied by SEM. The compressive properties of the foams were measured and toughness determined. The nanocomposite foams with 0.5% CNT show improvement in energy absorbing capabilities. Upon further increasing CNT concentration, the capability decreases. Further analysis revealed that this was due to the non-uniform foam morphology in those nanocomposite foams. This in turn resulted in from the mixed nucleation mechanisms because of the insufficient CNT dispersion when foamed from the retrograde phase. Enhancement of CNT dispersion in the matrix is needed in order to improve the uniformity of the foams and realize the potential of these materials. / A Thesis submitted to the Department of Industrial and Manufacturing Engineering in partial fulfillment of the requirements for the degree of Master of
Science. / Summer Semester, 2011. / June 30, 2011. / PMMA Nanocomposite Foams, Compressive Properties, Energy Absorbtion, Multi-walled Carbon Nanotubes / Includes bibliographical references. / Changchun Zeng, Professor Directing Thesis; Okenwa Okoli, Committee Member; Arda Vanli, Committee Member.

Identiferoai:union.ndltd.org:fsu.edu/oai:fsu.digital.flvc.org:fsu_181240
ContributorsKynard, Kristin (authoraut), Zeng, Changchun (professor directing thesis), Okoli, Okenwa (committee member), Vanli, Arda (committee member), Department of Industrial and Manufacturing Engineering (degree granting department), Florida State University (degree granting institution)
PublisherFlorida State University, Florida State University
Source SetsFlorida State University
LanguageEnglish, English
Detected LanguageEnglish
TypeText, text
Format1 online resource, computer, application/pdf
RightsThis Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). The copyright in theses and dissertations completed at Florida State University is held by the students who author them.

Page generated in 0.0022 seconds