Orientador: Marcelo Nicoletti Fanchin / Banca: Jackson Paul Matsuura / Banca: José Alfredo Covolan Ulson / Resumo: A proposta deste trabalho é dotar um robô móvel com a capacidade de mapear e se localizar no ambiente simultaneamente onde tal problema é conhecido na literatura clássica como SLAM (Simultaneous Localizaton and Mapping). Para operar, o robô deve ser capaz de manter uma estimativa da sua posição com base nos sensores embarcados veículo, adquirir e utilizar conhecimento sobre o mundo ao seu redor, possuir a habilidade de reconhecer obstáculos, e responder em tempo real as situações que possam ocorrer neste ambiente. Este trabalho propõe também a utilização de um sensor de ultra-som com varredura frontal de 180 graus, para detecção de landmarks (marcos) naturais em um ambiente interno para construção do mapa na memória do sistema de controle do robô. As informações do deslocamento do robô são fornecidas pelo sistema de odometria com encoder. Essas informações de deslocamento do robô a distância dos landmarks são combinadas através da aplicação do Filtro de Kalman Estendido (EKF), para o cálculode posição e orientação estimados do robô bem como a posição estimada dos landmarks (mapa). Trata-se de um trabalho com resultados preliminares, que tem como contribuição específica realizar a tarefa de localização e mapeamento simultaneamente (SLAM) usando um sensor de ultra-som rotativo. São apresentados também os resultados de simulação da técnica de localização e mapeamento simultâneo usando o Filtro de Kalman Estendido (EKT) e complementadas com avaliações experimentais em ambiente reais, aplicado a um robô móvel trabalhando como um transportador de materiais automatizado no chão de fábrica. Discussões são apresentadas sobre os sensores usados, a complexidade computacional, a associação de dados e a modelagem e controle do robô móvel / Abstract: The purpose of this paper is to provide a mobile robot with the ability to simultaneously map and locate the environment. This problem is know in classical literature as SLAM (Simultaneous Localization and Mapping). To operate, the robot must be able to maintain an estimation of its position based on sensors attached to the vehicle, acquire and use knowledge about the world around it, have the ability to recognize obstacles and respond in real time situations that may occur in this environment. This paper also proposes the use of an ultrasonic sensor to scan an angle of 180 degrees, for detection of landmarks in a natural environment in order to build the internal map inside the robot's controller memory. The displacement information is provided by the robot odometry system with encoder. This information is combined through the application of Extended Kalmar filter (EKT). This is a preliminary work, which has the specific contribution the task of locating and mapping simultaneously (SLAM) using a rotating ultrasonic sensor. There is also presented the simulation of the technique of simultaneous localization and mapping using the extended Kalman filter (EKT) in addition of experimental evaluations in real environment, applied to a mobile robot working as an automated carried materials on the factory floor. Discussions are presented on the used sensors, the computational complexity, data combination and modeling and control of mobile robot / Mestre
Identifer | oai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000675957 |
Date | January 2011 |
Creators | Bigheti, Jeferson André. |
Contributors | Universidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Engenharia (Campus de Bauru). |
Publisher | Bauru : [s.n.], |
Source Sets | Universidade Estadual Paulista |
Language | Portuguese |
Detected Language | Portuguese |
Type | text |
Format | 110 f. : |
Relation | Sistema requerido: Adobe Acrobat Reader |
Page generated in 0.0025 seconds