Return to search

A utilização de imagens JERSI/SAR e LANDSAT na caracterização espacial dos depositos do tipo "placer" da provincia mineral de Tapajos / Digital mapping of mineralized placers in the Tapajos mineral province using JERS-1/SAR and LANDSAT TM data

Orientadores: Alvaro Penteado Crosta, Carlos Roberto Souza Filho / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Geociencias / Made available in DSpace on 2018-07-23T16:51:13Z (GMT). No. of bitstreams: 1
Pedroso_EnricoCampos_M.pdf: 16933120 bytes, checksum: 7918ebfdabea7851e56024cfbc779447 (MD5)
Previous issue date: 1998 / Resumo: Nas regiões tropicais onde há freqüente cobertura de nuvens ou condições atmosféricas adversas, a aquisição de produtos de sensoriamento remoto no espectro ótico é muitas vezes dificultada. Por outro lado, os sistemas de radar são sensores ativos capazes de penetrar através de nuvens que fornecem informações relacionadas à rugosidade de superfície, topografia, condições de umidade e vegetação.Este trabalho apresenta os resultados do mapeamento geológico automático da distribuição espacial das principais unidades litológicas da área de estudo e dos depósitos secundários do tipo placer. Foram utilizadas imagens de radar JERS-I / SAR, imagens multiespectrais (LANDSAT-5 / TM), mapa geológico na escala de 1:250.000 e métodos geoestatísticos de classificação textural por variogramas e por matrizes de co-ocorrência. A análise comparativa dos resultados do processamento dos dados digitais foi realizada mediante técnicas de superposição e integração com dados de verdade terrestre, representados pelo mapa geológico, a fim de avaliar o grau de eficiência dos métodos propostos. A classificação textural por variogramas provou ser uma ferramenta importante na caracterização espacial de domínios texturais em imagens de radar. Entretanto, as etapas de préprocessamento e segmentação destes dados revelaram-se indispensáveis para os processos de análise textural supracitados. A integração entre dados SAR e TM consiste em uma técnica poderosa se aplicada ao mapeamento geológico e exploração mineral, onde as componentes espectrais e texturais são reunidas em um único produto temático, que retrata o padrão de variabilidade espacial das feições investigadas / Abstract: This work presents the results of semi-automated approaches for the geological mapping of a significant metallogenic province of Brazil, the Tapajós gold province. The geology of the Tapajós region comprises Archaean to Phanerozoic rock assemblages. The main gold accumulations occur as placer deposits associated with Quaternary alluvium sediments. The Tapajós Province is located in the Brazilian Arnazon, in an area covered by a dense tropical rain forest. As optical remote sensing data is severely constrained by almost permanent cloud coverage, we have selected JERS-I SAR data, together with a 1:250,000 scale geological map as the basis for this work. ln tropical regions such as the Amazon, radar imagery is an important source of textural information. The main goal of this research was therefore to evaluate image processing techniques that allow to recognise textural domains that could be correlated to the underlying geology. Geostatistic-based semivariogram textural classifiers and the grey-level co-occurrence matrices methods were employed for the semi-automated textural recognition task. Both are based on the spatial distribution of pixel values within an image. A set of textural channels is produced by either method that can be displayed as a pseudocolor image. The technique based on the semivariogram analysis yielded the best results. This technique first calculates the value of the semivariogram function for given training areas of different textural features. After a detailed interpretation of the curves, the best lags are selected interactively by the user, i. e. the lags that best distinguish the textural units. Next in the process, a bayesian unsupervised classification is performed in the entire image, using a moving window of predefined dimensions, based on the function values previously established. A comparison of the results derived from the textural classifiers, additional information extracted by digital image processing of Landsat TM data and ground truth data showed a good correlation in the spatial distribution of the main geologic units. Furthermore, it allowed distinguishing the alluvium that host gold-mineralized placers, based on their distinctive geomorphic texture. The semivariogram classifier is a powerful mapping technique that can be successfully applied for regional geologic mapping and mineral exploration in tropical regions and in particular to the vast geologically unknown terranes of the Amazon. The integration of SAR and optical data such as JERSI /SAR and Landsat TM imagery is a very useful procedure to enhance textural and spectral information provided by these sensors / Mestrado / Metalogenese / Mestre em Geociências

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/287498
Date06 April 1998
CreatorsPedroso, Enrico Campos
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Souza Filho, Carlos Roberto de, 1965-, Crósta, Alvaro Penteado, 1954-, Amaral, Gilberto, Miranda, Fernando Pellon de
Publisher[s.n.], Universidade Estadual de Campinas. Instituto de Geociências
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Format151f. : il. &., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0026 seconds