Yttria-stabilized zirconia-based thermal barrier coating systems are the most widely used commercial coatings in the industry, with practical applications in aircraft engines and land-based power turbines. The purpose of thermal barriers is primarily to protect the substrate from high temperatures and also to increase its oxidation resistance. Currently, concerning the relatively frequent volcanic eruptions and increasing air traffic intensity in desert areas, increased attention is being paid to the development of new thermal and environmental coatings that will withstand the so-called CMAS attack and still successfully meeting the strictest requirements of the aerospace industry. Two newly developed experimental coatings consisting of three successive layers have been developed for this work. The upper two layers are thermal insulating ceramic coatings, where two different uppermost coatings were deposited. The first uppermost layer of the coating is a mixture of mullite and hexacelsian in a ratio of 70/30 wt. %. The second upper most type of coating consists of Al6Si2O13 + MgAl2O4 + BaCO3 in a ratio of 6:3:1 wt. %. The interlayer is made of the commercially utilized yttria-stabilized zirconia. The metallic CoNiCrAlY coating, which is directly deposited on the nickel-based superalloy MAR-M247, fulfils a compensatory function between the mechanical properties of the nickel superalloy and the ceramic coating. The thermal and environmental barrier system was deposited using air plasma spraying (APS) technology. The main objective of this work was to evaluate the effect of the newly developed thermal and environmental barrier coating, which has a high potential for the protection of component surfaces in an aggressive environment, on isothermical and thermomechanical fatigue behaviour of nickel-based superalloy MAR-M247. Low cycle fatigue tests were performed in strain control mode with constant strain amplitude on both uncoated and TEBC coated superalloy. Fatigue hardening/softening curves, cyclic stress-strain curves and fatigue life curves in the representation of total strain amplitude, plastic strain amplitude and stress amplitude on the number of cycles to failure were obtained. Microstructural analysis of MAR-M247 superalloy and a newly developed experimental coating was performed in a scanning electron microscope. The fatigue crack initiation sites were identified and the process of fatigue crack propagation was described. The dislocation arrangement after fatigue loading of MAR-M247 was investigated in a transmission electron microscope. The findings of isothermical and thermomechanical low cycle fatigue behaviour of uncoated and TEBC coated MAR-M247 superalloy and identification of damage mechanisms presented in this dissertation will improve the estimation of safe-life that is particularly relevant to aircraft engines components.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:409085 |
Date | January 2019 |
Creators | Šulák, Ivo |
Contributors | Pantělejev, Libor, Polák, Jaroslav, Obrtlík, Karel |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds