In response to concern that excessive macroalgal growth and accumulation was occurring in some inshore areas of Lake Macquarie, the distribution, abundance and seasonality of macroalgae was investigated in relation to nutrient input and power station cooling water. Macroalgal dry weight biomass was measured at ten sites on a monthly basis for two years, with an analysis of community structure conducted using Multi-Dimensional Scaling. The macroalgal community in Lake Macquarie was typical of those found in other New South Wales coastal lagoons, exhibiting considerable spatial and temporal variation. A close similarity was observed in macroalgal community structure at sites affected by urban nutrient input, these being characterised by a high biomass often attributable to only one or two species. These nuisance macroalgae were mostly green algae, which were almost entirely absent from other sites. Biomass at sites affected by urban nutrient input was generally within the range documented for eutrophic estuaries elsewhere. Analysis of macroalgal community structure showed no evidence of large-scale changes macroalgal communities attributable to the effects of power station cooling water except within 500m of the outfall. At sites affected by a 1-2??C temperature increase, community structure and the magnitude of the biomass were similar to sites deemed as being relatively free of human impact. A reduction in species diversity occurred only within the immediate discharge zone, where water temperatures were approximately 6??C above ambient temperatures. Excessive growth of nuisance macroalgal species was not observed at any of the sites influenced by power station cooling water. There were no distinct patterns in seasonality of macroalgal growth in this study, though the greatest biomass appeared to occur in spring. The irregular temporal variation in macroalgal growth suggests that the most significant factors affecting growth occur on a time scale of weeks to months. It is therefore likely nutrient input to the nearshore through surface runoff is an important influence on the distribution and abundance of macroalgae in Lake Macquarie. This emphasises the need to reduce nitrogen and phosphorus input from urban sources in Lake management.
Identifer | oai:union.ndltd.org:ADTP/212658 |
Date | January 1999 |
Creators | Nicholls, David John, School of Biological Science, UNSW |
Publisher | Awarded by:University of New South Wales. School of Biological Science |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright David John Nicholls, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0022 seconds