Return to search

SpotLight: An Information Service for the Cloud

Infrastructure-as-a-Service cloud platforms are incredibly complex: they rent hundreds of different types of servers across multiple geographical regions under a wide range of contract types that offer varying tradeoffs between risk and cost. Unfortunately, the internal dynamics of cloud platforms are opaque in several dimensions. For example, while the risk of servers not being available when requested is critical in optimizing these risk-cost tradeoffs, it is not typically made visible to users. Thus, inspired by prior work on Internet bandwidth probing, we propose actively probing cloud platforms to explicitly learn such information, where each "probe'' is a request for a particular type of server. We model the relationships between different contracts types to develop a market-based probing policy, which leverages the insight that real-time prices in cloud spot markets loosely correlate with the supply (and availability) of fixed-price on-demand servers. That is, the higher the spot price for a server, the more likely the corresponding fixed-price on-demand server is not available. We incorporate market-based probing into SpotLight, an information service that enables cloud applications to query this and other data, and use it to monitor the availability of more than 4500 distinct server types across 9 geographical regions in Amazon's Elastic Compute Cloud over a 3 month period. We analyze this data to reveal interesting observations about the platform's internal dynamics. We then show how SpotLight enables two recently proposed derivative cloud services to select a better mix of servers to host applications, which improves their availability from 70-90% to near 100% in practice.

Identiferoai:union.ndltd.org:UMASS/oai:scholarworks.umass.edu:masters_theses_2-1363
Date13 July 2016
CreatorsOuyang, Xue
PublisherScholarWorks@UMass Amherst
Source SetsUniversity of Massachusetts, Amherst
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses

Page generated in 0.0139 seconds