Queuing systems are important parts of our daily lives and to keep their operations at an efficient level they need to be monitored by using queuing Performance Metrics, such as average queue lengths and average waiting times. On the other hand queue lengths and waiting times are generally random variables and their distributions depend on different properties like arrival rates, service times, number of servers. We focused on detecting the change in service rates in this report. Therefore, we monitored queues by using Cumulative Sum(CUSUM) charts based on likelihood ratios and compared the Average Run Length values of different service rates.
Identifer | oai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-8731 |
Date | 26 October 2018 |
Creators | Kaya, Yaren Bilge |
Publisher | Scholar Commons |
Source Sets | University of South Flordia |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Graduate Theses and Dissertations |
Page generated in 0.0158 seconds