The thesis focuses on a model that seeks to address patient scheduling step of the surgical scheduling process to determine the number of surgeries to perform in a given day. Specifically, provided a master schedule that provides a cyclic breakdown of total OR availability into specific daily allocations to each surgical specialty, we look to provide a scheduling policy for all surgeries that minimizes a combination of the lead time between patient request and surgery date, overtime in the ORs and congestion in the wards. We cast the problem of generating optimal control strategies into the framework of Markov Decision Process (MDP). The Approximate Dynamic Programming (ADP) approach has been employed to solving the model which would otherwise be intractable due to the size of the state space. We assess performance of resulting policy and quality of the driven policy through simulation and we provide our policy insights and conclusions.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU-OLD./23622 |
Date | 09 January 2013 |
Creators | Astaraky, Davood |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thèse / Thesis |
Page generated in 0.0019 seconds