Return to search

STATISTICAL MODELS AND THEIR APPLICATIONS IN STUDYING BIOMOLECULAR CONFORMATIONAL DYNAMICS

It remains a major challenge in biophysics to understand the conformational dynamics of biomolecules. As powerful tools, molecular dynamics (MD) simulations have become increasingly important in studying the full atomic details of conformational dynamics of biomolecules. In addition, many statistical models have been developed to give insight into the big datasets from MD simulations. In this work, I first describe three statistical models used to analyze MD simulation data: Lifson-Roig Helix-Coil theory, Bayesian inference models, and Markov state models. Then I present the applications of each model in analyzing MD simulations and revealing insight into the conformational dynamics of biomolecules. These statistical models allow us to bridge microscopic and macroscopic mechanisms of biological processes and connect simulations with experiments. / Chemistry

Identiferoai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/4101
Date January 2017
CreatorsZhou, Guangfeng
ContributorsVoelz, Vincent, Levy, Ronald M., Matsika, Spiridoula, Carnevale, Vincenzo
PublisherTemple University. Libraries
Source SetsTemple University
LanguageEnglish
Detected LanguageEnglish
TypeThesis/Dissertation, Text
Format169 pages
RightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/
Relationhttp://dx.doi.org/10.34944/dspace/4083, Theses and Dissertations

Page generated in 0.0093 seconds