Return to search

Pond-Hindsight: Applying Hindsight Optimization to Partially-Observable Markov Decision Processes

Partially-observable Markov decision processes (POMDPs) are especially good at modeling real-world problems because they allow for sensor and effector uncertainty. Unfortunately, such uncertainty makes solving a POMDP computationally challenging. Traditional approaches, which are based on value iteration, can be slow because they find optimal actions for every possible situation. With the help of the Fast Forward (FF) planner, FF- Replan and FF-Hindsight have shown success in quickly solving fully-observable Markov decision processes (MDPs) by solving classical planning translations of the problem. This thesis extends the concept of problem determination to POMDPs by sampling action observations (similar to how FF-Replan samples action outcomes) and guiding the construction of policy trajectories with a conformant (as opposed to classical) planning heuristic. The resultant planner is called POND-Hindsight.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-2034
Date01 May 2011
CreatorsOlsen, Alan
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0017 seconds