Return to search

Problems in nonlinear Bayesian filtering

This dissertation presents solutions to two open problems in estimation theory. The first is a tractable analytical solution for problems in multi-target filtering which are too complex to solve using traditional techniques. The second explores a new approach to the nonlinear filtering problem for a general class of models. The approach to the multi-target filtering problem which involves jointly estimating a random process of the number of targets and their state, developed using the probability hypothesis density (PHD) filter alleviates the intractability of the problem by avoiding explicit data association. Moreover, the notion of linear jump Markov systems is generalized to the multiple target case to accommodate births, deaths and switching dynamics to derive a closed form solution to the PHD recursion for this so-called linear Gaussian jump Markov multi-target model. The proposed solution is general enough to accommodate a broad class of practical problems which are deemed intractable using traditional techniques. Based on this closed form solution, an efficient method is developed for tracking multiple maneuvering targets that switch between multiple models without the need for gating, track initiation and termination, or clustering for extracting state estimates. The approach to the nonlinear filtering problem explores the framework of the virtual linear fractional transformation (LFT) model which localizes the nonlinearity to the feedback with a simple and sparse structure. The LFT is an exact representation for any differentiable nonlinear mapping and therefore amenable to a general class of problems. An alternative analytical approximation method is presented which avoids linearization of the state space model. The uncorrelated structure of the feedback connection gives of the state space model. The uncorrelated structure of the feedback connection gives better second-order moment approximation of the nonlinearly mapped variables. By arranging the unscented transform in the feedback, the prediction and estimation steps are derived in closed form. The proposed filters for the discrete-time model and continuous-time dynamics with sampled-data measurements respectively are shown to be robust under highly nonlinear and uncertain conditions where standard analytical approximation based filters diverge. Moreover, the LFT based filters are efficient for online implementation. In addition, the LFT framework is applied to extend the closed form solution of the PHD recursion to the nonlinear jump Markov multi-target model.

Identiferoai:union.ndltd.org:ADTP/258707
Date January 2009
CreatorsPasha, Syed, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW
PublisherAwarded by:University of New South Wales. Electrical Engineering & Telecommunications
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Pasha Syed., http://unsworks.unsw.edu.au/copyright

Page generated in 0.0018 seconds