Return to search

A Method for Reconstructing Historical Destructive Earthquakes Using Bayesian Inference

Seismic hazard analysis is concerned with estimating risk to human populations due to earthquakes and the other natural disasters that they cause. In many parts of the world, earthquake-generated tsunamis are especially dangerous. Assessing the risk for seismic disasters relies on historical data that indicate which fault zones are capable of supporting significant earthquakes. Due to the nature of geologic time scales, the era of seismological data collection with modern instruments has captured only a part of the Earth's seismic hot zones. However, non-instrumental records, such as anecdotal accounts in newspapers, personal journals, or oral tradition, provide limited information on earthquakes that occurred before the modern era. Here, we introduce a method for reconstructing the source earthquakes of historical tsunamis based on anecdotal accounts. We frame the reconstruction task as a Bayesian inference problem by making a probabilistic interpretation of the anecdotal records. Utilizing robust models for simulating earthquakes and tsunamis provided by the software package GeoClaw, we implement a Metropolis-Hastings sampler for the posterior distribution on source earthquake parameters. In this work, we present our analysis of the 1852 Banda Arc earthquake and tsunami as a case study for the method. Our method is implemented as a Python package, which we call tsunamibayes. It is available, open-source, on GitHub: https://github.com/jwp37/tsunamibayes.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-9645
Date04 August 2020
CreatorsRinger, Hayden J.
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttps://lib.byu.edu/about/copyright/

Page generated in 0.011 seconds