Return to search

Accelerating Markov chain Monte Carlo via parallel predictive prefetching

We present a general framework for accelerating a large class of widely used Markov chain Monte Carlo (MCMC) algorithms. This dissertation demonstrates that MCMC inference can be accelerated in a model of parallel computation that uses speculation to predict and complete computational work ahead of when it is known to be useful. By exploiting fast, iterative approximations to the target density, we can speculatively evaluate many potential future steps of the chain in parallel. In Bayesian inference problems, this approach can accelerate sampling from the target distribution, without compromising exactness, by exploiting subsets of data. It takes advantage of whatever parallel resources are available, but produces results exactly equivalent to standard serial execution. In the initial burn-in phase of chain evaluation, it achieves speedup over serial evaluation that is close to linear in the number of available cores. / Engineering and Applied Sciences

Identiferoai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/13070022
Date21 October 2014
CreatorsAngelino, Elaine Lee
ContributorsSeltzer, Margo I., Adams, Ryan Prescott
PublisherHarvard University
Source SetsHarvard University
Languageen_US
Detected LanguageEnglish
TypeThesis or Dissertation
Rightsopen

Page generated in 0.0119 seconds