Return to search

Market forecasting in China: An Artificial Neural Network approach to optimize the accuracy of sales forecasts in the Chinese automotive market / Marktprognosen in China: Einsatz eines Künstlichen Neuronalen Netzes zur Optimierung der monatlichen Absatzprognosequalität im chinesischen Automobilmarkt

Sales forecasts are an essential determinant of operational planning in entrepreneurial organizations. However, in China, as in other emerging markets, monthly sales forecasts are particularly challenging for multinational automotive enterprises and suppliers. A chief reason for this is that conventional approaches to sales forecasting often fail to capture the underlying market dynamics. To that end, this dissertation investigates the application of Artificial Neural Networks with an implemented backpropagation algorithm as a more “unconventional” sales forecasting method. A key element of statistical modelling is the selection of superior leading indicators. These indicators were collected as part of the researcher’s expert interviews with multinational enterprises and state associations in China. The economic plausibility of all specified indicators is critically explored in qualitative-quantitative pre-selection procedures. The overall objective of the present study was to improve the accuracy of monthly sales forecasts in the Chinese automotive market. This objective was achieved by showing that the forecasting error could be lowered to a new benchmark of less than 10% in an out-of-sample forecasting application. / Absatzprognosen sind ein zentraler Bestandteil der operativen Unternehmensplanung. In China, wie auch in anderen Schwellenländern, stellen vor allem monatliche Prognosen jedoch eine besondere Herausforderung für multinationale Automobilhersteller und deren Zulieferer dar. Ein Grund hierfür ist, dass konventionelle Prognoseverfahren der außergewöhnlich hohen Marktdynamik nicht ausreichend gerecht werden. In der vorliegenden Dissertationsschrift werden Künstliche Neuronale Netze mit integriertem Backpropagation-Algorithmus als alternatives Marktprognoseverfahren eingehend beleuchtet. Erprobt vor allem in hochvolatilen Finanzmarktanwendungen ist diese Form künstlicher Intelligenz imstande, hochkomplexe Zusammenhänge zu entschlüsseln und selbständig aus Prognosefehlern zu lernen. Ein Kernelement der statistischen Modellierung ist die Auswahl von geeigneten Frühwarnindikatoren, die unter anderem durch Experteninterviews in chinesischer Sprache bei Regierungsablegern erhoben wurden. Die ökonomische Plausibilität der genannten Indikatoren wird in qualitativ-quantitativen Vorauswahlverfahren kritisch reflektiert. Grundlegendes Ziel des Forschungsprojektes war es, die Güte der monatlichen Absatzprognosen im chinesischen Automobilmarkt zu verbessern. Dieses Ziel konnte mit Unterschreitung der entscheidenden 10%-Prognosefehlerschwelle im Validierungsdatensatz erreicht werden.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:20315
Date January 2020
CreatorsBrzoska, Jan
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://creativecommons.org/licenses/by-sa/4.0/deed.de, info:eu-repo/semantics/openAccess

Page generated in 0.0028 seconds