The Marnoch heat engine (MHE) is a new type of power generation device that is under research and development at the University of Ontario Institute of Technology. In this thesis, the transient heat transfer behaviour of the source heat exchanger of the Marnoch heat engine is studied, and its operation for laminar and turbulent flows is modelled. The temperature variations of the working fluid, the heating fluid and the wall, are calculated. The temperature distribution of the fluids and the wall over the length of the heat exchanger is also calculated. It is found that the temperature of the working fluid rises sharply to a peak and then gradually decreases. The wall temperature decreases exponentially, and the temperature of the heating fluid falls sharply, and then gradually decreases. A base model for the step change in the mass flow of the working fluid is developed and compared against past works for the purpose of validation. / UOIT
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOSHDU.10155/72 |
Date | 01 December 2009 |
Creators | Regulagadda, Prashant |
Contributors | Naterer, Greg, Dincer, Ibrahim |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0018 seconds