Return to search

Caractérisation de biomarqueurs de la transition endothélio-mésenchymateuse dans la dystrophie endothéliale cornéenne de Fuchs

Titre de l'écran-titre (visionné le 29 janvier 2024) / La dystrophie endothéliale cornéenne de Fuchs (FECD) est une pathologie qui touche la couche postérieure de la cornée, l'endothélium cornéen. Ce dernier fait office de barrière physique entre l'humeur aqueuse et le reste de la cornée. De ce fait, lorsqu'il est défectueux, une accumulation de l'humeur aqueuse dans le stroma entraîne l'apparition d'un œdème stromal et de bulles épithéliales. Il s'en suit une opacification cornéenne menant à une perte de vision irréversible. Cliniquement, la pathologie est associée à l'épaississement de la membrane de Descemet (DM) dû à un dépôt accru de matrice extracellulaire (MEC), entraînant la formation d'excroissances, appelées guttae. Puis, une perte de densité des cellules endothéliales cornéennes (CECs) se produit contribuant aux difficultés de maintenir la déturgescence du stroma. En Amérique du Nord, la FECD est la principale cause de transplantation de cornées qui représente son seul traitement. De nouveaux traitements sont à l'étude mais nécessitent une bonne compréhension de la maladie et des dérégulations de l'endothélium cornéen. La FECD étant une pathologie multifactorielle, son étiologie reste difficile à déterminer. La recherche a mené à la proposition de différentes hypothèses d'explications au développement de la maladie. Parmi elles, la transition endothélio-mésenchymateuse ou épithélio-mésenchymateuse (TEM). Ce processus cellulaire consiste au passage d'un phénotype endothélial ou épithélial vers un phénotype mésenchymateux. Malgré quelques mises en évidence de la TEM dans la FECD, des signes clés de cette transition manquent dans la maladie, tels que le passage à une morphologie fibroblastique et un changement de cadhérines. C'est pourquoi notre laboratoire a décidé de clarifier la présence de la TEM dans la FECD. L'objectif de ce projet est de comprendre comment la TEM est activée dans la FECD et son impact sur les CECs. De ce fait, notre laboratoire a étudié la TEM à un niveau intracellulaire et extracellulaire en utilisant aussi bien des CECs primaires que des modèles tissulaires. Notre attention s'est d'abord portée sur l'étude des protéines impliquées dans les voies TGF-β/Smad et Wnt/β-caténine (connues pour activer la TEM) dans les CECs *ex vivo* et *in vitro*. Dans un deuxième temps, nous nous sommes intéressées au dépôt anormal de MEC, un des signes d'une TEM. En effet, nous avons proposé que les protéines matricielles anormalement déposées seraient impliquées dans la perte cellulaire endothéliale dans la FECD. Nous avons donc étudié l'expression de protéines matricielles dans les stades précoces et avancés de la FECD et leur influence sur l'adhésion et la migration des CECs en culture. Pour répondre au premier objectif, des données transcriptomiques et l'expression des protéines liées à la TEM ont été étudiées *ex vivo*. Les protéines d'intérêt ont également été étudiées *in vitro* avec ou sans irradiation chronique d'UVA. Nos travaux en *ex vivo* FECD ont révélé l'absence de l'activité des voies Wnt/β-caténine et TGF-β/Smad. *In vitro*, ces deux voies de signalisations étaient actives et une augmentation de TGF-β2 a également été observée. Néanmoins, l'exposition aux UVA n'a pas modifié le profil d'expression des protéines. Pour le deuxième objectif, les données transcriptomiques du matrisome de CECs *ex vivo* et *in vitro* ont été analysées. Nous avons ensuite étudié la morphométrie des guttae en *ex vivo* et l'expression de nos protéines d'intérêt en *ex vivo* et sur les endothélia cornéens reconstruits sains et pathologiques. Des tests d'adhésion et de migration ont ensuite été réalisés. Les gènes *SPP1* (Ostéopontine), *FN1* (Fibronectine) et *TNC* (Ténascine-C) étaient régulés à la hausse en *ex vivo* et SPP1 était régulé à la hausse aussi bien *ex vivo* qu'*in vitro*. La fibronectine (FN), ténascine-C (TN-C), ostéopontine (OPN) et le collagène de type XIV (COL XIV) étaient exprimés dans les DM FECD mais seules la TN-C et la FN se retrouvaient dans les endothélia reconstruits FECD. La FN et la TN-C n'ont pas modifié l'adhésion des CECs mais l'OPN l'a diminuée. La FN et la combinaison de FN et TN-C ont augmenté significativement la migration des CECs. Les travaux de cette thèse permettent d'apporter plus de connaissances sur l'activation de la TEM dans la FECD et mettent en évidence une chronologie du dépôt de MEC anormale dans la pathologie ainsi que la façon dont les CECs y réagissent. Une meilleure compréhension du développement de la FECD pourrait apporter des clés pour la conception de nouveaux traitements. / Fuchs corneal endothelial dystrophy (FECD) is a pathology that affects the posterior layer of the cornea, the corneal endothelium. The endothelium acts as a physical barrier between the aqueous humor and the rest of the cornea, so when it is defective, an accumulation of aqueous humor in the stroma leads to stromal edema and epithelial bullae. This leads to corneal opacification and irreversible vision loss. Clinically, the pathology is associated with thickening of Descemet's membrane (DM) due to an increase of extracellular matrix (ECM), leading to the formation of outgrowths known as guttae. This is followed by a loss of corneal endothelial cell (CEC) density, making it difficult to maintain stromal deturgescence. In North America, FECD is the leading cause of corneal transplantation, which is its only treatment. New treatments are under study but require a good understanding of the disease and corneal endothelium dysregulation. As FECD is a multifactorial pathology, its etiology remains difficult to determine. Research has led to the proposal of various hypothesis to explain the development of the disease. One of these is endothelial to mesenchymal or epithelial to mesenchymal transition (EMT). This cellular process is characterized by the transition from an endothelial or epithelial phenotype to a mesenchymal one. Despite some evidence of EMT in FECD, key signs of this transition are missing in the disease, such as the transition to a fibroblastic morphology or the cadherins switch. Therefore, our laboratory decided to clarify the presence of EMT in FECD. The aim of this project is to understand how EMT is activated in FECD and its impact on CECs. Accordingly, our laboratory has studied EMT at both intracellular and extracellular levels, using both primary CECs and tissue models. Our first focus was on the study of proteins involved in the TGF-β/Smad and Wnt/β-catenin pathways (known to activate EMT) in *ex vivo* and *in vitro* CECs. In a second step, we focused on abnormal ECM deposition, one of the key signs of EMT. Indeed, we proposed that abnormally deposited matrix proteins would be involved in endothelial cell loss in FECD. We therefore studied the expression of matrix proteins in the early and late stages of FECD and their influence on the adhesion and migration of cultured CECs. To address the first objective, transcriptomic data and the expression of EMT-related proteins were studied *ex vivo*. Proteins of interest were also studied *in vitro* with or without chronic UVA irradiation. Our *ex vivo* FECD work revealed the absence of Wnt/β-catenin and TGF-β/Smad pathway activity. *In vitro*, both signaling pathways were active, and an increase in TGF-β2 was also observed. Nevertheless, UVA exposure did not alter the protein expression profile. For the second objective, transcriptomic data from the *ex vivo* and *in vitro* matrisome were analyzed. We then studied guttae morphometry in *ex vivo* specimens and the expression of our proteins of interest in *ex vivo* specimens and on healthy and pathological tissue engineered corneal endothelia. Adhesion and migration assays were then performed. *SPP1* (Osteopontin), *FN1* (Fibronectin) and *TNC* (Tenascin-C) genes were up-regulated *ex vivo*, and *SPP1* was up-regulated both *ex vivo* and *in vitro*. Fibronectin (FN), tenascin-C (TN-C), osteopontin (OPN) and collagen type XIV (COL XIV) were expressed in FECD DMs, but only TN-C and FN were found in reconstructed FECD endothelia. FN and TN-C had no impact on CEC adhesion, but OPN did. FN and the combination of FN and TN-C significantly increased CEC migration. The studies of this thesis provide further insight into the activation of EMT in FECD, highlight the chronological abnormal ECM deposition in the pathology and how CECs respond to it. A better understanding of the FECD development could bring keys to design new treatments.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/134684
Date02 February 2024
CreatorsTchatchouang, Ange
ContributorsProulx, Stéphanie
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxi, 173 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0034 seconds