Return to search

Efficient Late Binding of Dynamic Function Compositions

Adaptive software becomes more and more important as computing is increasingly context-dependent. Runtime adaptability can be achieved by dynamically selecting and applying context-specific code. Role-oriented programming has been proposed as a paradigm to enable runtime adaptive software by design. Roles change the objects’ behavior at runtime and thus allow adapting the software to a given context. However, this increased variability and expressiveness has a direct impact on performance and memory consumption. We found a high overhead in the steady-state performance of executing compositions of adaptations. This paper presents a new approach to use run-time information to construct a dispatch plan that can be executed efficiently by the JVM. The concept of late binding is extended to dynamic function compositions. We evaluated the implementation with a benchmark for role-oriented programming languages leveraging context-dependent role semantics achieving a mean speedup of 2.79× over the regular implementation.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:73178
Date18 December 2020
CreatorsSchütze, Lars, Castrillon, Jeronimo
PublisherACM
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/acceptedVersion, doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation978-1-4503-6981-7, 10.1145/3357766.3359543

Page generated in 0.0034 seconds