Return to search

Structural Impact Mitigation of Bridge Using Tuned Mass Damper

This paper investigates the application of tuned mass damper (TMD) systems to bridge pier systems for structural impact damage mitigation and thus reduce the risk of collapses. A bridge superstructure and substructures are designed in accordance with The American Association of State Highway and Transportation Officials (AASHTO) specifications. A variety of vessel collision forces are obtained from collision testing of a scaled reinforced concrete pier. The optimal parameters of TMD systems are then determined such that the drift and displacement of the bridge superstructure are minimized for various impact scenarios. The structural impact mitigation performance of the pier equipped with the proposed optimal TMD system is compared with five different TMD systems employing the benchmark TMD optimal parameters. The uncontrolled responses are used as a baseline. It was demonstrated from the extensive simulations that the control effectiveness of the proposed TMD system was 25% better than all of the existing TMD models in reducing structure responses.

Identiferoai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-theses-1725
Date04 May 2015
CreatorsHoang, Tu A
ContributorsPinar Okumus, Committee Member, Leonard D. Albano, Committee Member, Yeesock Kim, Advisor
PublisherDigital WPI
Source SetsWorcester Polytechnic Institute
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses (All Theses, All Years)

Page generated in 0.0034 seconds