<p> Reaction of the hydrated trichlorides of rhodium and Iridium with hexamethyldewarbenzene gave the complexes, (C5Me5MCl2)2 (M=Rh, Ir). A mechanism for this reaction is proposed.</p> <p> The dichloro complexes, (C5Me5MCl2)2, were reacted with a number of di- and tri-enes in ethanol in the presence of base and gave a variety of pentamethylcyclopentadienyl complexes of M(l) and M(lll). Evidence for a hydrido intermediate is presented and the hydrido- and deuterido- complexes, C5Me5IrH(D)ClPPh3, were isolated
and characterised.</p> <p> The isomers endo-H and exo-H pentamethylcyclopentadiene(cyclopentadienyl) rhodium were isolated and showed significant differences in their properties. Cyclooctadienes reacted with (C5Me5MCl2)2 to give C5Me5M(1,5-C8H12) via the intermediacy of the π-2-cyclooctenyl complexes C5Me5MCl(C8H13); mechanisms are presented to account for the observed products. Cyclohexadienes gave the complexes, C5Me5M(1,3-C6H8). 1,4-Cyclohexadiene was isomerised to 1,3-C6H8; the rhodium complex, C5Me5Rh(1,3-C6H8), was a very active catalyst for the disproportionation of 1,3-C6H8 to cyclohexene and benzene, both ethanol and base were cocatalysts.</p> <p> Mass spectral data for these and other organo-metallic complexes are presented.</p> / Thesis / Doctor of Philosophy (PhD)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/19768 |
Date | 12 1900 |
Creators | Moseley, Keith |
Contributors | Maitlis, P. M., Chemistry |
Source Sets | McMaster University |
Language | en_US |
Detected Language | English |
Type | Thesis |
Page generated in 0.0015 seconds