Die Analyse von organischen Polymeren mittels Massenspektrometrie mit induktiv gekoppeltem Plasma nach Laserablation unterliegt starken Matrixeffekten. Mögliche Korrekturmodelle sollten basierend auf der tatsächlich ablatierten Elementmasse sowie der Signalintensität des Kohlenstoffisotops C-13 (13C-Korrektur) entworfen werden. Damit die 13C-Korrektur erfolgreich verlaufen kann, ist ein direkter Zusammenhang zwischen ablatiertem Kohlenstoff und gemessenem 13C-ICP-MS Signal erforderlich. Dies wurde überprüft, indem unter Anwendung der konfokalen Mikroskopie das Ablationskratervolumen bestimmt und der ablatierte Kohlenstoff berechnet wurde. Dieser Zusammenhang konnte sowohl für undotierte, wie auch für elementdotierte Polymere und die Verwendung verschiedener Ablationsgase (Helium, Argon und Sauerstoff) ermittelt werden. Eigens hergestellte polymere elementdotierte Standardmaterialien wurden hinsichtlich der Matrixeffekte charakterisiert. Als größter Einflussfaktor stellte sich die unterschiedliche Ablationsrate bei der Ablation verschiedener Polymere heraus. Unter Anwendung der tatsächlich ablatierten Elementmasse sowie unter Anwendung der 13C-Korrektur konnte die Matrixabhängigkeit deutlich verringert werden.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:105-qucosa-227255 |
Date | 27 July 2017 |
Creators | Deiting, Daniel |
Contributors | TU Bergakademie Freiberg, Chemie und Physik, Prof. Dr. Matthias Otto, Prof. Dr. Matthias Otto, Prof. Dr. Martin Kreyenschmidt |
Publisher | Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola" |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | deu |
Detected Language | German |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0028 seconds