Return to search

Particle Path Determination in Large Ice Masses Using the Finite Element Method

<p> A stream function finite element model is developed to solve for particle paths within a large ice mass. A steady-state primitive variable finite element model, treating ice as an incompressible non-Newtonian fluid, is used to furnish the necessary input velocities and rotations for the stream function finite element model. Time-integration along the particle paths is used to determine the age of the ice within the ice mass.</p> <p> Two ice masses are studied: the Barnes Ice Cap, Baffin Island, N.W.T., and Mount Logan, Yukon Territory. It is shown that if a realistic approximation of the velocity field of an ice mass can be established, the age of ice determined by time-integration along particle paths corresponds to the age determined by standard methods. Results of simulations using a transient model suggest that the elastic response of large ice masses is negligible.</p> / Thesis / Master of Engineering (MEngr)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/19212
Date05 1900
CreatorsKilleavy, Michael Stephan
ContributorsStolle, D. F. E., Civil Engineering
Source SetsMcMaster University
Languageen_US
Detected LanguageEnglish
TypeThesis

Page generated in 0.0019 seconds