abstract: In this thesis, we present the study of several physical properties of relativistic mat- ters under extreme conditions. We start by deriving the rate of the nonleptonic weak processes and the bulk viscosity in several spin-one color superconducting phases of quark matter. We also calculate the bulk viscosity in the nonlinear and anharmonic regime in the normal phase of strange quark matter. We point out several qualitative effects due to the anharmonicity, although quantitatively they appear to be relatively small. In the corresponding study, we take into account the interplay between the non- leptonic and semileptonic weak processes. The results can be important in order to relate accessible observables of compact stars to their internal composition. We also use quantum field theoretical methods to study the transport properties in monolayer graphene in a strong magnetic field. The corresponding quasi-relativistic system re- veals an anomalous quantum Hall effect, whose features are directly connected with the spontaneous flavor symmetry breaking. We study the microscopic origin of Fara- day rotation and magneto-optical transmission in graphene and show that their main features are in agreement with the experimental data. / Dissertation/Thesis / Ph.D. Physics 2013
Identifer | oai:union.ndltd.org:asu.edu/item:18686 |
Date | January 2013 |
Contributors | Wang, Xinyang (Author), Shovkovy, Igor (Advisor), Belitsky, Andrei (Committee member), Easson, Damien (Committee member), Peng, Xihong (Committee member), Vachaspati, Tanmay (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Doctoral Dissertation |
Format | 134 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved |
Page generated in 0.0017 seconds