[Tuncated abstract] There has been longstanding concern over whether endobronchial biopsies adequately represent inflammation throughout the bronchial tree in diseases such as asthma, despite the endobronchial biopsy technique having been used frequently to assess airway inflammation in research settings. There has also been ongoing debate about whether endobronchial biopsies should be assessed by new, unbiased, three-dimensional (3D) stereological techniques instead of traditional, two-dimensional (2D) non-stereological techniques. Therefore, the aims of this study were: (i) to investigate whether endobronchial biopsies represent the density of mast cells in the large and small airways, in alveolar walls and in the lung as a whole (ii) to use both stereological and non-stereological methods to address this question, and where possible, to compare the results of these two approaches. '...' Mast cell density in biopsies was not related to mast cell density immediately adjacent to the biopsy site or to mast cell density in the total airway wall in the large airways, the inner airway wall in the small airways, the walls of the alveoli or the lung as a whole. In general, measurements of mean mast cell density on biopsies to a depth of 100µm below the basement membrane were poorly related to mean mast cell density in other compartments of the lung. Mean 3D and 2D mast cell densities were strongly correlated (r 0.9, p < 0.005) and where both methods were used, results were similar. The mean height and area profile of a mast cell were approximately 12µm and 68µm2 respectively. In disk-shaped IUR lung samples, percent shrinkage in height due to paraffin processing was systematically greater than percent radial shrinkage by an average of approximately 4 times. Cavalieri lung volumes were systematically smaller than displacement volumes by an average of 14%. Any given endobronchial biopsy is unlikely to represent mast cell density around the airway wall generally in the vicinity of the biopsy site. However, the average of at least 4 biopsies from different sites in the proximal airways can be used to both represent mean mast cell density in the inner airway wall of the large airways, and act as the basis for inter-subject comparisons of mean mast cell density in the total airway wall of the small airways. On biopsies, mast cell counts should be measured over the entire inner airway wall not just to a depth of 100µm or less below the basement membrane. 3D mast cell densities obtained by stereological methods are closely related to 2D mast cell densities obtained by non-stereological methods and are likely to result in similar conclusions. Lung volumes are smaller when measured by the Cavalieri method than when measured by fluid displacement. Shrinkage of isotropic uniform random samples of human lung tissue due to paraffin processing is anisotropic. The mean volume of a mast cell in the human lung is likely to be much smaller than that reported previously for monkey lungs.
Identifer | oai:union.ndltd.org:ADTP/222324 |
Date | January 2008 |
Creators | Carroll, Mark |
Publisher | University of Western Australia. School of Medicine and Pharmacology, West Australian Sleep Disorders Research Institute |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Mark Carroll, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html |
Page generated in 0.0012 seconds