Les alliages Fe-Si sont connus pour combiner d’excellentes propriétés magnétiques avec de bonnes propriétés électriques (forte résistivité électrique). Dans ce contexte nous avons recherché à élaborer des matériaux à forte teneur en Si, souvent difficiles à obtenir et mettre en forme industriellement. Des alliages magnétiques doux de type Fe-Si avec une teneur élevée en Si (4,5%, 6,5%, 10% et 15% massique) ont été obtenus avec succès à l’état nanocristallin par broyage mécanique et recuit. La formation des alliages a été étudiée par diffraction X, spectroscopie Mössbauer et analyses thermomagnétiques. La stabilité thermique de la poudre a été analysée par DSC. Des mesures d’aimantation ont été réalisées pour caractériser les performances magnétiques. La durée de broyage nécessaire pour la formation de l’alliage a été déterminée pour chaque teneur en Si. Pour les faibles temps de broyage, le recuit conduit à la formation du composé Fe3Si. Après la formation de l’alliage par le broyage mécanique, l’effet du recuit est seulement de réduire les tensions internes du second ordre, induites dans la poudre par le broyage. L’addition de Si conduit à la diminution de la température de Curie de 770 °C pour le Fe pur, à 725 °C pour une teneur de 4,5% massique de Si et à 550 °C pour 15% massique de Si. Pour les temps faibles de broyage, l’écart entre l’aimantation de la poudre avant et après recuit est dû à la formation du composé Fe3Si pendant le recuit, lequel a une aimantation plus faible que la solution solide de Feα(Si). Pour les longs temps de broyage, le recuit à 400 °C pour 4 heures n’a pas d’effet sur la valeur de l’aimantation à saturation. En augmentant la teneur en Si, l’aimantation à saturation de l’alliage Fe-Si décroit.Les alliages Ni3Fe (aussi connus comme Permalloys) présentent de meilleures propriétés magnétiques, mais ils ont une résistivité inférieure à celles des Fe-Si. Une voie attractive semble la combinaison des propriétés des 2 classes de matériaux doux en formant un composite. Les alliages Fe-Si précédemment obtenus ont été utilisés pour l’élaboration des poudres composites de type Permalloy/Fe-Si par la mécanosynthèse. Le broyage mécanique conduit à la formation des particules composites avec un aspect stratifié. Quatre heures de broyage de l’alliage Fe-Si avec du Ni3Fe ne conduisent pas à la formation des nouvelles phases, mais la formation d’un alliage ternaire Ni-Fe-Si résulte d’un recuit ultérieur à 900 °C. L’aimantation à saturation du composite augmente avec la croissance de la teneur le d’alliage Fe-Si, mais le temps de broyage ne semble avoir aucun effet sur cela.Une étude préliminaire a été réalisée sur l’élaboration des compacts composites de type Ni3Fe/Fe-Si par frittage flash, dans le but de préserver l’état nanocristallin par de basses températures de frittage. L’influence de la température de frittage et de la durée de maintien sur la structure, et les propriétés physiques des compacts est discutée. Des températures allant jusqu'à 750 °C pour une durée de maintien minimale ou un palier de 2 minutes maximum à 700 °C ne conduisent pas à la diffusion des éléments des alliages. L'augmentation de la température ou de la durée de frittage conduit à des cristallites plus grandes, mais qui restent dans le domaine nano pour les températures étudiées. La densité des compactes augmente avec la température et le palier. En outre, la résistivité diminue en augmentant ces 2 paramètres. L'effet de la teneur en Fe-Si est de diminuer la densité et en même temps d'augmenter la résistivité des compacts. La perméabilité magnétique est réduite avec l'augmentation de la température et de la durée de frittage, ainsi que lors de la diminution du contenu de Ni3Fe. Une température élevée et un long temps de maintien à la température de frittage conduisent à l’augmentation des pertes magnétiques. Le champ coercitif est également influencé par les paramètres de frittage, via l'effet qu'ils ont sur la taille des cristallites. / Fe-Si alloys are known for combining excellent magnetic properties with good electric characteristics (high resistivity). In this context we sought to develop materials with a relatively high Si content, often difficult to obtain and shape industrially.In this thesis, soft magnetic Fe-Si alloys with high Si content (4.5, 6.5, 10 and 15 wt. %) were successfully obtained in nanocrystalline state by mechanical alloying and annealing. The formation of the alloy was studied by X-ray and neutron diffraction, Mossbauer spectroscopy and thermomagnetic analysis. DSC technique was used in order to study the powder’s thermal stability. Magnetisation measurements were also made in order to characterise their magnetic performances. The milling duration necessary for the formation of the alloy was determined for each Si content. For low milling times, annealing leads to the formation of the Fe3Si compound. Once the alloy is formed by mechanical milling, the effect of the annealing is only to reduce the second order stress induced in the powder by the milling process. Si addition leads to the decrease of the alloy’s Curie temperature from 770 °C for pure Fe to 725 °C for a 4.5 wt. % Si and down to 550 °C if the Si content increases to 15 wt. %. For low milling times, a gap between the magnetisation of the as-milled alloy and of the milled and subsequently annealed one is due to the formation of the Fe3Si compound during annealing which has a lower magnetisation than that of the αFe (Si) solid solution. For longer milling durations, annealing at 400 °C for 4 hours has no effect on the saturation magnetisation value. By increasing the Si content, the Fe-Si alloy’s saturation magnetisation decreases.Fe-Ni alloys whose composition is close to Ni3Fe (commonly known as Permalloys) have better magnetic properties, but a resistivity well inferior to that of Fe-Si alloys. Therefore, a combination of the properties of these 2 alloy classes of soft magnetic materials into a composite seems to be an attractive route. The previously obtained Fe-Si alloys were used for the preparation of Permalloy/Fe-Si composite powders by mechanical milling. Milling leads to the formation of composite powder particles with a stratified aspect. Milling of the Fe-Si and Ni3Fe alloys for 4 hours does not lead to the formation of new phases, but a subsequent annealing at 900 °C results in the formation of a Ni-Fe-Si alloy. Saturation magnetisation of the composite increases with increasing of the Fe-Si content, but milling duration seems to have no effect on it.A preliminary study was made on the elaboration of Ni3Fe/Fe-Si composite compacts obtained by spark plasma sintering, aiming to preserve the nanocrystalline state by lower sintering temperatures. The influence of the sintering temperature and temperature holding duration on the structure, density, resistivity and magnetic properties of the compacts is discussed. Temperatures of up to 750 °C for minimal holding duration or a maintain at the temperature of 700 °C for a duration of up to 2 minutes does not lead to a diffusion of the alloys’ elements. Increasing of the sintering temperature or duration leads to larger crystallite sizes, but they remain in the nano domain for the studied temperatures. The compacts’ density increases with temperature and sintering duration. Resistivity, on the other hand decreases when increasing the aforementioned parameters. The effect of the Fe-Si content is to decrease the density and at the same time increase the compacts’ resistivity. Magnetic permeability is reduced with increasing sintering temperature and duration, as well as when decreasing of the Ni3Fe content. High temperature and long maintaining duration leads to an increase of magnetic losses. Coercive field is also influenced by sintering parameters by the effect they have on the crystallite size.
Identifer | oai:union.ndltd.org:theses.fr/2017GREAY020 |
Date | 11 May 2017 |
Creators | Stanciu, Cristina Daniela |
Contributors | Grenoble Alpes, Universitatea tehnica (Cluj-Napoca, Roumanie), Isnard, Olivier, Chicinaş, Ionel |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0031 seconds