Les matériaux mésoporeux sont devenus des nanomatériaux d’une grande importance, et le contrôle des structures des matériaux mésoporeux est essentiel pour une variété d'applications pratiques. Les matériaux «cœur/coquille» structurés sont un type de matériaux hybrides qui non seulement possèdent les propriétés des composants individuels, mais présentent également de effets synergiques entre le «cœur» et la «coquille». La conception de matériaux mésoporeux et «cœur/coquille» structurés pour les appliquer avec succès dans la pratique devrait être une force de progrès importante pour le développement continu. Cette thèse se concentre principalement sur deux aspects: (1) une conception de matériaux mésoporeux «cœur/coquille» structurés en vue de résoudre les problèmes de synthèse, qui entravent leurs nouvelles applications et (2) l'application de matériaux mésoporeux dans la capture du CO2 cyclique pour améliorer la durabilité des sorbants de CO2 en prenant avantage du concept de «cœur/coquille». Visant le cyclage de l’hydroxyde de calcium, une technologie attrayante pour la capture du CO2 à grande échelle, nous avons établi un nouveau mésoporeux «cœur/coquille» structuré à base de CaO qui présentait une grande stabilité et d'excellentes performances de résistance à l’attrition, attribuées aux avantages des matériaux mésoporeux et à la configuration de «cœur/coquille». Notre procédé de fabrication peut être facilement réalisé à grande échelle et répond aux exigences de la circulation entre des réacteurs en lit fluidisé. Les nanoparticules métalliques ont normalement tendance à se coaguler ensemble dans des réactions catalytiques, et sont difficiles à séparer. Par conséquent, nous avons démontré une synthèse de microsphères Fe3O4@C-Pd@mSiO2 à composants multiples et polyvalentes avec une structure «cœur/coquille» bien définie et des nanoparticules catalytiques de Pd confinées, et ayant des canaux mésoporeux ordonnés et facilement accessibles. Récemment, des méthodes diverses ont été proposées pour fabriquer un revêtement de matériaux mésoporeux sur un cœur par un processus de «soft-templating». Cependant, les diamètres des mésopores générés sont généralement très faibles (< 3 nm), ce qui peut limiter leurs nouvelles applications. Ici, nous avons réalisé la synthèse de microsphères «cœur/coquille» structurées superparamagnétiques possédant une coquille externe de silice mésoporeuse ordonnée à larges pores (4,5 nm), en adoptant un copolymère tribloc comme agent tensioactif directeur de structure. / Mesoporous materials, especially ordered ones have become ones of great importance nanomaterials, which possess regular, uniform and interpenetrating mesopores in nanoscale. Morphology and texture controls towards mesoporous materials are critical for a variety of practical applications, the ultimate goal of which are the realization of their functional design. Core/shell composite materials are a type of functional hybrid materials which not only possess the properties of the individual components, but also exhibit some new or synergistic effects between the core and the shell. The design of mesoporous materials with unique core/shell configuration and multifunctions to make them successfully applied in practice, should be an important driving force for the continuous development of current material science. This thesis mainly focuses on two aspects: (1) careful design of core/shell structured mesoporous materials in order to solve the problem and difficulty in synthesis, which hinders their further applications and (2) application of mesoporous materials in cyclic CO2 capture to enhance the durability of CO2 sorbents by taking advantage of the core/shell concept. Aiming at the calcium looping cycle, an attractive technology for large-scale CO2 capture, we have prepared novel mesoporous core/shell structured CaO-based sorbents which exhibit highly stable cyclability and excellent attrition-resistance performances, attributed to advantages of both mesoporous materials and unique core/shell configuration. Our fabrication method could easily be realized in large-scale and meet the requirements of circulating fluidized bed reactors. Owing to their high surface energies, metallic nanoparticles normally tend to aggregate together during catalytic reactions, and their separation from a complex heterogeneous system is another obstacle. In this regards, we have demonstrated a facile and versatile synthesis of multicomponent and multifunctional microspheres Fe3O4@C-Pd@mSiO2 with well-defined core/shell structures, confined catalytic Pd nanoparticles and accessible ordered mesopore channels. Recently, various methods have been proposed for coating mesoporous shells on cores by soft-templating process. However, the generated mesopores are usually very small (< 3 nm), which may limit their further applications. In this work, we have accomplished the synthesis of superparamagnetic core/shell structured microspheres possessing an outer shell of ordered mesoporous silica with large pores (4.5 nm) by adopting triblock-copolymer Pluronic P123 as soft-template.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/26106 |
Date | 23 April 2018 |
Creators | Sun, Zhen Kun |
Contributors | Kaliaguine, S., Mahinpey, Nader |
Source Sets | Université Laval |
Language | English |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xxxii, 233 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0014 seconds