Le développement de nanocomposites thermoconducteurs à base de caoutchouc est une tâche difficile pour diverses technologies modernes, allant des appareils électroniques à l'industrie du pneu. La présente étude est concentrée sur les propriétés thermiques et mécaniques de composites de caoutchouc naturel chargés avec des additifs à base de carbone, notamment du noir de carbone, des nanotubes de carbone, de l'oxyde de graphène réduit et des nanoplaquettes de graphène. En raison de la faible conductivité thermique du caoutchouc, des concentrations élevées de divers additifs thermoconducteurs sont nécessaires. Cependant, cela a un impact significatif sur le comportement mécanique des matériaux finaux, ce qui limite leur application. Dans ce scénario difficile, nous avons cherché à améliorer la conductivité thermique et les propriétés mécaniques (y compris les propriétés en traction, la dureté, les propriétés dynamiques, etc.) de nanocomposites à base de caoutchouc en exploitant des systèmes de charges hybrides à base de carbone. Nous avons aussi modifié la surface de ces charges pour améliorer leur interaction avec la matrice en caoutchouc dans le but de créer un réseau continu de charges à travers la matrice. La première partie de la thèse (chapitre 2) décrit l'effet de l'ajout de l'oxyde de graphène réduit (RGO) sur la conductivité thermique et les propriétés mécaniques de caoutchouc. Le RGO a d'abord été synthétisé en utilisant la méthode Hummer améliorée. Ensuite, il a été pré-dispersé dans du latex naturel en utilisant la technique de co-coagulation puis mélangé à la formulation de référence à différentes teneurs (0-2 parties pour cent en caoutchouc (phr))à l'aide d'un mélangeur interne. Pour une concentration de RGO de 2 phr, les résultats ont montré que la densité de réticulation des nanocomposites caoutchouc/RGO développés avait augmenté de 65% par rapport à la formulation de base. Une augmentation significative de la résistance à la traction (53%) et du module de Young (31%) a été observée pour la même concentration en RGO. Enfin, il a été observé que l'ajout de seulement 0.5 phr de RGO avait entraîné une amélioration considérable (26%) de la conductivité thermique. Dans la deuxième partie de la thèse (chapitre 3), l'effet d'un système de charges hybride (noir de carbone/nanotubes de carbone multi-parois, MWCNT) sur les propriétés mécaniques et la conductivité thermique des nanocomposites développés a été étudié. En raison de la différence de forme entre le noir de carbone et les MWCNT, ainsi que de l'adsorption des agents de réticulation à la surface des MWCNT, il a été observé que le temps de cuisson (vulcanisation) (t₁₀) et celui de cuisson optimal (t₉₀) de la matrice en caoutchouc augmentaient progressivement avec l'augmentation de la teneur en MWCNT. Enfin, en remplaçant 5 phr de noir de carbone par la même concentration en MWCNT, des améliorations significatives de la conductivité thermique et des propriétés mécaniques ont été obtenues grâce aux propriétés intrinsèques des MWCNT et à leur synergie avec le noir de carbone. En outre, les modules à 100% et 300% de déformation (M@100 et M@300) des nanocomposites développés ont respectivement augmenté de 72% et 54%. Dans la troisième partie de la thèse (chapitre 4), la modification de surface des MWCNT a été réalisée pour améliorer le comportement mécanique dynamique des nanocomposites correspondants et trouver un ratio optimal de charges menant à des propriétés mécaniques et thermiques améliorées. Les résultats ont montré l'effet positif de l'oxydation de la surface des MWCNT sur la dispersion des charges et les propriétés thermiques et mécaniques des nanocomposites. La dernière partie de la thèse (chapitre 5) a été consacrée à l'étude de l'effet synergique des systèmes hybrides de charges (noir de carbone/nanoplaquettes de graphène, GNPs) dans lequel les GNPs (GNP-M25, GNP-C300 et GNP-C750) présentaient différentes surfaces spécifiques et différents rapports d'aspect. Les résultats ont montré que la surface spécifique de la charge et son rapport d'aspect jouent un rôle vital dans la production d'un réseau de charges conducteur. L'incorporation du GNP-M25 ayant une dimension latérale la plus élevée parmi les trois GNPs étudiés permettait de développer un nanocomposite ayant une conductivité thermique plus élevée. D'autre part, à une concentration élevée (5 phr), la synergie entre GNPs-M25 et le noir de carbone était élevée, entraînant une meilleure dispersion des charges et une plus faible dissipation d'énergie. / Creating effective thermally conductive rubber nanocomposites for heat management is a challenging task for various modern technologies, from electronic devices to the tire industry. This study focused on the thermal and mechanical properties of natural rubber nanocomposites filled with carbon-based fillers, including carbon black, carbon nanotubes, reduced graphene oxide (RGO), and graphene nanoplatelets. Due to the poor thermal conductivity of rubber materials, high loadings of various thermally conductive fillers are required. However, this significantly impacts the final materials' mechanical behavior, limiting their application. In this challenging scenario, we aimed to enhance the thermal conductivity and mechanical properties (including tensile properties, hardness, dynamic mechanical properties, etc.) of rubber-based nanocomposites by exploiting hybrid carbon-based filler systems and suitable filler surface modification to improve the formation of continuous filler's network through the natural rubber (NR) matrix. The first part of the thesis (chapter 2) describes the effect of adding RGO to the natural rubber's thermal conductivity and mechanical properties. RGO was first synthesized using an improved Hummer method. Then, RGO pre-dispersed in natural rubber latex using the co-coagulation technique was added to a reference formulation in various contents (0-2 parts per hundred rubber (phr)), and compounded using an internal mixer. It was observed that the crosslink density of the developed natural rubber/RGO nanocomposites increased by 65% for RGO concentration of 2 phr. A significant increase in tensile strength (53%) and Young's modulus (31%) was observed for the same RGO concentration. Ultimately, the addition of only 0.5 phr of RGO resulted in a considerable improvement (26%) in thermal conductivity. In the second part of the thesis (chapter 3), the effect of the carbon black/multiwall carbon nanotubes (MWCNT) hybrid filler system on the mechanical properties and thermal conductivity of the nanocomposites was studied. Because of the shape difference between carbon black and MWCNT and the adsorption of curing agents onto the MWCNT, the scorch time (t₁₀) and optimum curing time (t₉₀) gradually increased with increasing MWCNT content. Finally, by substituting 5 phr of carbon black with MWCNT, significant improvements in thermal conductivity and mechanical properties were achieved due to the intrinsic properties of MWCNT and its synergy with carbon black. Moreover, the modulus at 100% and 300% strain (M@100 and M@300) increased by 72% and 54%, respectively. In the third part of the thesis (chapter 4), the surface modification of MWCNT was carried out to improve the dynamic mechanical behavior of the natural rubber/MWCNT nanocomposites to find an optimum fillers ratio having suitable mechanical and thermal properties. The results showed the positive effect of MWCNT surface oxidation on the fillers' dispersion and nanocomposites' properties. The last part (chapter 5) focused on the synergistic effect between carbon black and GNPs hybrid fillers with different surface areas and aspect ratios (GNPs-M25, GNPs-C300, and GNPs-C750). The results showed that the specific surface area of filler and its aspect ratio play a vital role in producing a conductive filler network. GNPs-M25 with a higher lateral dimension led to the highest consistency and denser conductive network inside the NR nanocomposite compared to GNPs-C300 and GNPs-C750. On the other hand, higher substitution increased the synergy of hybrid fillers, resulting in better filler dispersion and less energy dissipation.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/73871 |
Date | 13 December 2023 |
Creators | Shahamati Fard, Farnaz |
Contributors | Rodrigue, Denis, Mighri, Frej |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xxi, 163 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0028 seconds