Le grenaillage est souvent utilisé sur les pieds d’aube de turbine haute pression afin de retarder l’apparition des fissures dans les zones de concentration de contraintes. Ce traitement de surface génère des contraintes résiduelles et de l’écrouissage en surface de la pièce, ce qui influe sur sa durée de vie. L’enjeu de cette thèse est de mettre en place une méthodologie permettant de prendre en compte cet état mécanique initial, ainsi que son évolution en service, dans l’analyse de durée de vie d’une aube élaborée en superalliage monocristallin à base de nickel (AM1). Tout d’abord, cet état mécanique (contraintes résiduelles et écrouissage) est déterminé expérimentalement. Les contraintes résiduelles sont notamment évaluées par diffraction des rayons X en utilisant la méthode d’Ortner. Cet état mécanique est ensuite introduit dans les calculs de structure. Pour cela, on s’inspire de la méthode connue de l’introduction directe du champ d’eigenstrains qui est, ensuite, étendue afin d’introduire également les variables d’écrouissage ainsi que l’état mécanique anisotrope complet dans toute la structure. L’étape suivante a visé à suivre expérimentalement et à modéliser l’évolution de ces quantités sous sollicitations thermique, d’une part et cycliques à température constante (650°C), d’autre part. Enfin, la chaîne complète de calcul de durée de vie de l’AM1 est appliquée afin d’analyser la durée de vie des éprouvettes grenaillées. Les résultats obtenus sont discutés en regard des essais de fatigue effectués sur éprouvettes représentatives / Shot-peening is widely used on roots of high pressure turbine blade to postpone crack initiation in stress concentration area. This pre-stressing introduces compressive residual stress and strain hardening in a surface layer which will influence lifetime. The aim of this thesis is to propose a methodology which allows taking into account the impact of such pre-stressing and their evolution on the fatigue behaviour of a single crystal nickel-based superalloy (AM1) used for high pressure turbine blades. Firstly, the experimental work is devoted to the determination of the initial mechanical state (residual stresses and strain hardening). Residual stresses are namely determined using X-ray diffraction involving the use of a specific method developed by Ortner. This experimental initial mechanical state is then introduced as an input in structure calculation. The well-known method involving the direct introduction of eigenstrain profiles is used and improved to also introduce strain hardening variables and the complete anisotropic mechanical state in all the integration points of the structure. The next step consist in following experimentally and modeling the evolution of these quantities under thermal and mechanical loads under an uniform temperature (650°C). Finally, the complete lifetime assessment is carried out on representative shot-peened samples. Results are discussed with respect to experimental fatigue tests
Identifer | oai:union.ndltd.org:theses.fr/2016TROY0004 |
Date | 30 March 2016 |
Creators | Morançais, Amélie |
Contributors | Troyes, François, Manuel, Kanouté, Pascale |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds