Uma parte significativa da vida de um componente mecânico pode ocorrer com a propagação de trincas em fadiga. Atualmente, dispõe-se de vários modelos matemáticos para descrever o comportamento do crescimento da trinca. Esses modelos são classificados em duas categorias em termos da amplitude de tensão: constante (CAC) e variável (CAV). Em geral, esses modelos de propagação são formulados como um problema de valor inicial (PVI) e, a partir disso, a curva de evolução da trinca é obtida através da aplicação de um método numérico. Nesta dissertação apresentou-se a aplicação da metodologia “Fast Bounds Crack” para o estabelecimento das funções cotas superior e inferior para modelos de evolução do tamanho de trinca. O desempenho desta metodologia foi avaliado através do desvio relativo e tempo computacional, em relação às soluções numéricas aproximadas obtidas pelo método de Runge-Kutta de 4º ordem explícito (RK4). Atingiu-se um desvio relativo máximo de 5,92% e o tempo computacional foi, para os exemplos resolvidos, 130000 vezes superior ao tempo obtido pelo método do RK4. Realizou-se, ainda, uma aplicação de Engenharia para a obtenção de uma solução numérica aproximada, a partir da média aritmética das cotas superior e inferior obtidas na metodologia aplicada neste trabalho, quando não se conhece a lei de evolução. O erro relativo máximo encontrado nessa aplicação foi de 2,08% o que comprova a eficiência da metodologia “Fast Bounds Crack”. / A significant part of the life of a mechanical component occurs, the crack propagation stage in fatigue. Currently, it is had several mathematical models to describe the crack growth behavior. These models are classified into two categories in terms of stress range amplitude: constant and variable. In general, these propagation models are formulated as an initial value problem, and from this, the evolution curve of the crack is obtained by applying a numerical method. This dissertation presented the application of the methodology "Fast Bounds Crack" for the establishment of upper and lower bounds functions for model evolution of crack size. The performance of this methodology was evaluated by the relative deviation and computational times, in relation to approximate numerical solutions obtained by the Runge-Kutta method of 4th explicit order (RK4). Has been reached a maximum relative deviation of 5.92% and the computational time was, for examples solved, 130,000 times more higher than achieved by the method RK4. Was performed yet an Engineering application in order to obtain an approximate numerical solution, from the arithmetic mean of the upper and lower bounds obtained in the methodology applied in this work, when you don’t know the law of evolution. The maximum relative error found in this application was 2.08% which proves the efficiency of the methodology "Fast Bounds Crack".
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.utfpr.edu.br:1/1640 |
Date | 03 November 2015 |
Creators | Machado Junior, Waldir Mariano |
Contributors | Silva Júnior, Claudio Roberto Ávila da, Velásquez Alegre, José Antonio Andrés, Silva Júnior, Claudio Roberto Ávila da, Silva Neto, João Morais da, Nascimento, Eduardo Mauro do, Borges, Paulo César |
Publisher | Universidade Tecnológica Federal do Paraná, Curitiba, Programa de Pós-Graduação em Engenharia Mecânica e de Materiais, UTFPR, Brasil |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional da UTFPR, instname:Universidade Tecnológica Federal do Paraná, instacron:UTFPR |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0028 seconds