Return to search

Modellierung des mechanischen Verhaltens der Komponenten eines intrinsischen Hybridverbundes

Durch die Kombination verschiedener Werkstoffklassen ermöglichen Hybridverbunde die Entwicklung von Strukturbauteilen, die sich beispielsweise durch eine hohe Festigkeit bei einem gleichzeitig geringen Gewicht auszeichnen. Trotz des großen Einsatzpotentials wurden Hybridverbunde, begründet durch eine kostenintensive und zeitaufwendige Fertigung, bislang nicht für Großserienbauteile vorgesehen. Mit der Konzeption intrinsischer, das heißt einstufiger, Produktionsprozesse wird es jedoch gelingen die Attraktivität zu steigern und damit die Anwendung von Hybridverbunden unter anderem auch in der Automobilindustrie zu etablieren. Exemplarisch soll im Rahmen dieser Arbeit die Entwicklung eines intrinsischen Hybridverbundes für crashbelastete Strukturbauteile simulativ begleitet werden. Der dabei betrachtete Hybridverbund besteht aus einem endlosfaserverstärktem Kunststoff, in den ein metallischer Einleger eingebracht ist. Zur Realisierung der Anbindung der Komponenten sieht das Konzept des Hybridverbundes die Kombination von Form- und Stoffschluss vor. Dabei resultiert der Stoffschluss aus der Beschichtung des metallischen Einlegers, die die Ausbildung eines Interface bewirkt. Zur Realisierung des Formschlusses werden während des überlagerten Umformprozesses lokal Formschlusselemente des metallischen Einlegers in den endlosfaserverstärkten Kunststoff gepresst. Dadurch weisen die resultierenden Bauteile eine komplexe innere Struktur auf, die die simulative Analyse und damit die Bauteilauslegung erschwert.

Das Ziel der vorliegenden Arbeit besteht in der Modellierung und Simulation dieses intrinsischen Hybridverbundes. Dazu ist zunächst das Materialverhalten aller Komponenten durch adäquate Materialmodelle für große Deformationen abzubilden. Für deren Entwicklung wird ein Konzept zur Materialmodellierung aufgegriffen und erweitert, das die Formulierung auf der Basis direkt verschalteter rheologischer Elemente ermöglicht. Nach entsprechenden Parameteridentifikationen werden die Materialmodelle im Rahmen von Finite-Elemente-Simulationen eines aus dem Hybridverbund gefertigten Demonstratorbauteils angewendet. Dabei ermöglicht das Vorgehen zur Modellerstellung die Berücksichtigung und Bewertung von Einflüssen der intrinsischen Fertigung auf das Bauteilverhalten. / Hybrid parts, combining for example low weight with high strength, are based on the combination of different material classes. Despite an enormous potential for applications, hybrid composites are not well established for large series parts due to the expensive and complex production. To increase the number of applications, intrinsic, i.e. single-step, manufacturing processes are designed. Within this work, the development of an intrinsic hybrid composite for crash-relevant structural parts is supported by simulations. The considered hybrid composite is made up of a fibre-reinforced polymer, in which a metallic insert is integrated. The connection between these components is based on a combination of geometrical form fit and adhesive bonding. On one hand, adhesive bonds result from a coating of the metallic insert. On the other hand, local form fit elements are pressed into the fibre reinforced polymer during the global forming process. Consequently, the resulting parts, manufactured in just one step, show a complex inner structure, which make simulative analyses and dimensioning more difficult.

Within the work at hand, the main research goal is the modelling and simulation of this intrinsic hybrid composite. To this end, the mechanical behaviour of all individual components has to be described by appropriate material models at large strains. For those developments, a concept of material modelling, which enables the formulation based on directly connected rheological elements, is adopted and extended. After identifying the according material parameters, these material models are applied within finite element simulations of a demonstrator made up of the hybrid composite. Thereby, the applied procedure for creating finite element models allows to consider and evaluate how the intrinsic manufacturing process affects the mechanical behaviour of the parts.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:37014
Date10 January 2020
CreatorsKießling, Robert
ContributorsIhlemann, Jörn, Lion, Alexander, Technische Universität Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds