Additive manufacturing (AM) is a technology that inverts the procedure of traditional machining. Instead of starting with a billet of material and removing unwanted parts, the AM manufacturing process starts with an empty workspace and proceeds to fill this workspace with material where it is desired, often in a layer-by-layer fashion. Materials available for AM processing include polymers, concrete, metals, ceramics, paper, photopolymers, and resins. This thesis is concerned with electron beam melting (EBM), which is a powder bed fusion technology that uses an electron beam to selectively melt a feedstock of fine powder to form geometries based on a computer-aided design file input. There are significant differences between EBM and conventional machining. Apart from the process differences, the ability to manufacture extremely complex parts almost as easily as a square block of material gives engineers the freedom to disregard complexity as a cost-driving factor. The engineering benefits of AM also include manufacturing geometries which were previously almost impossible, such as curved internal channels and complex lattice structures. Lattices are lightweight structures comprising a network of thin beams built up by multiplication of a three-dimensional template cell, or unit cell. By altering the dimensions and type of the unit cell, one can tailor the properties of the lattice to give it the desired behavior. Lattices can be made stiff or elastic, brittle or ductile, and even anisotropic, with different properties in different directions. This thesis focuses on alleviating one of the problems with EBM and AM, namely the relatively few materials available for processing. The method is to take a closer look at the widely used stainless steel 316LN, and investigate the possibility of processing 316LN powder via the EBM process into both lattices and solid material. The results show that 316LN is suitable for EBM processing, and a processing window is presented. The results also show that some additional work is needed to optimize the process parameters for increased tensile strength if the EBM-processed material is to match the yield strength of additively laser-processed 316L material. / <p>Vid tidpunkten för framläggningen av avhandlingen var följande delarbete opublicerat: delarbete 3 (inskickat).</p><p>At the time of the defence the following paper was unpublished: paper 3 (submitted).</p>
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:miun-37840 |
Date | January 2019 |
Creators | Roos, Stefan |
Publisher | Mittuniversitetet, Institutionen för kvalitets- och maskinteknik, Sundsvall : Mid Sweden University |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Mid Sweden University licentiate thesis, 1652-8948 ; 164 |
Page generated in 0.0023 seconds