This thesis concerns the materials science of carbon-based fullerene-like structures as a basis for the improvement of the applicability of FL-CNx protective thin films. In particular, structural origins of mechanical properties of FL-CNx coatings and water adsorption on their surface were investigated, both of which are critical parameters for their application as, e.g., computer hard disk protective coatings. Also, prospective FL-CPx structures were investigated by first-principles modeling. I present an introduction to theoretical methods used to study the effects of nitrogen and phosphorus as dopant elements. The modeling results include pure phosphorus clusters, mixed carbon-phosphorus clusters, and growth of fullerenelike phospho-carbide structures. Finally, I present some implications for the synthesis of FL-CPx thin films and the extension of the research to other dopant elements including sulphur, arsenic, and germanium.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-8057 |
Date | January 2007 |
Creators | Furlan, Andrej |
Publisher | Linköpings universitet, Tunnfilmsfysik, Linköpings universitet, Tekniska högskolan, Institutionen för fysik, kemi och biologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Linköping Studies in Science and Technology. Thesis, 0280-7971 ; 1294 |
Page generated in 0.002 seconds