Topological insulators (TIs) are a class of quantum materials, which behave as insulators in the bulk, yet possess gapless spin-polarized surface states, which are robust against nonmagnetic impurities. The unique properties of TIs make them attractive not only for studying various fundamental phenomena in condensed matter and particle physics, but also as promising candidates for applications ranging from spintronics to quantum computation. Within the topological insulator realm, a great deal of focus has been placed on discovering new quantum materials, however, ideal multi-modal quantum materials have yet to be found. Here we study alpha-PdBi2, KFe2Te2, and DySb compounds including others within these families with high-resolution angle-resolved photoemission spectroscopy (ARPES) complimented by first principles calculations. We observe unique phase changes and phenomena across their transition temperatures. Our work paves a new direction in material discovery and application related to their unique electronic properties.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:honorstheses-2143 |
Date | 01 January 2021 |
Creators | Dimitri, Klauss M |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Honors Undergraduate Theses |
Page generated in 0.0048 seconds