Return to search

Two-dimensional temperature model for target materials bombarded by ion beams

The ion implantation process is a very precise, controllable, and
reproducible method used to enhance material properties of finished
components such as ball bearings. Essentially, the target material is
bombarded by accelerated ions to form a thin alloyed layer in the
substrate. As the ions deposit their kinetic energy in the target it
begins to heat up. To prevent thermal distortion in the finished pieces
the ion implantation is performed at dose levels (dependent on the ion
fluence and time duration of implantation) to insure that the target
pieces stay at relatively low temperatures. Consequently, the low
temperature requirement for many applications limits the economic, and
probably, the physical success of ion implantation.
The purpose of this study was to show the applicability of using a
two-dimensional computer code developed to model plasma disruptions and
subsequent energy deposition on a fusion reactor first wall to calculate
surface and bulk temperature information during ion implantation. In
turn the code may assist researchers pursuing development of adequate
cooling for target materials in an attempt to overcome the low
temperature constraint.
All data supported the hypotheses that the two-dimensional code
previously developed for fusion reactor applications was adequate to
model the ion implantation process. / Graduation date: 1992

Identiferoai:union.ndltd.org:ORGSU/oai:ir.library.oregonstate.edu:1957/37236
Date04 February 1992
CreatorsBostick, Kent C.
ContributorsKlein, Andrew C.
Source SetsOregon State University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.002 seconds