Return to search

Three-body abrasive wear of materials

Includes bibliographical references. / This work is an investigation into the phenomenon of three-body abrasive wear. A specially designed three body abrasive wear apparatus has been built, modified and evaluated as part of this overall study. Further, a series of commercially available candidate materials has been evaluated for wear resistance using silica sand as the abrasive on this purpose made rig. The effect of normal load, abrasive particle size, abrasive feed rate and the type of abrasive on three body wear resistance has also been examined. It has been shown that there is little increase in wear with an increase in particle size in the size range from 50µm to 180µm and that above an abrasive particle size of approximately 200µm there is a sharp decrease in the wear with increasing particle size, followed by a levelling off in the wear. The wear was found to increase linearly with increasing load. Varying the abrasive feed rate showed that at lower feed rates the abrasive particles were more efficient at removing materials, so the wear was higher than at higher abrasive feed rates. It has also been shown that although the use of ash from coal-fired power stations as an abrasive produces wear of materials, the volume losses were much smaller than those obtained using silica sand and thus it is considered that the tests using silica gave results which were more reliable. The volume losses of alumina ceramics abraded against ash were insufficient to give reliable wear test data and it was concluded' that ash could not be used to rank materials of high hardness. A number of materials were ranked for wear resistance using silica sand abrasive particles. The alumina ceramics and tungsten carbide composite materials showed the best wear performance.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uct/oai:localhost:11427/7669
Date January 2000
CreatorsJewell, Gavin
ContributorsAllen, Colin
PublisherUniversity of Cape Town, Faculty of Engineering and the Built Environment, Centre for Materials Engineering
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeMaster Thesis, Masters, MSc
Formatapplication/pdf

Page generated in 0.0096 seconds