Return to search

Commercial applications of block copolymer photonic gels

Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2008. / Includes bibliographical references. / Block copolymer photonic gels are a simple and easily processed material which responds rapidly to environmental stimuli through a color change. The diblock copolymer that forms the gel self-assembles into a lamellar structure that has the potential to reflect light over a broad range of wavelengths, from the IR to the UV. Application of a stimulus causes a change in the periodicity and/or index of refraction of layers that result in a shift of the stop band. The types of stimuli include temperature, pressure, pH, electric field, salt concentration, and humidity. Due to the high level of tunability of the polymers, it is possible to tailor the response of the gel to achieve a desired effect. This thesis is an assessment of the commercial applications of the photonic gel technology. First a cost model was developed for the polymerization of the block copolymer, polystyrene-b-poly(2-vinyl pyridine). The results indicate that it is cost effective to invest in a small scale production facility at large production volumes. Next, an evaluation of three potential markets was conducted. The anti-counterfeit market is most promising because of large profit margins and the opportunity for future company growth through R&D of new anti-counterfeit measures. The other two markets in color cosmetics and food preservation present potential opportunities for licensing. / by Sally S. Lou. / M.Eng.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/45383
Date January 2008
CreatorsLou, Sally S
ContributorsEdwin L. Thomas., Massachusetts Institute of Technology. Dept. of Materials Science and Engineering., Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format62 leaves, application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0013 seconds