Return to search

Ceramic microforming process

Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 1998. / Includes bibliographical references (leaves 110-113). / A forming process for creating MEMS and mesoscale ceramic parts with micron scale features has been developed. This micromolding process takes advantage of clean room compatible techniques to create silicon etchings, which are used to create a silicone transfer mold. The silicone molds are used to make numerous sacrificial mold into which ceramic slurry is cast. The wax molds are sacrificed leaving green ceramic parts which are fired to produce the final component. The process was found to reproduce features as small as 2 gm with a tolerance of ± 0.8 pm over about a 100 pm length scale. The production of several parts are examined, demonstrating the ability to make stand alone MEMS and mesoscale parts with complex geometries. A non-ceramic application involving precise particle arrangement is also discussed. Observations regarding part quality, defect formation, yield issues, and process enhancement are made, along with a characterization of the dimensional stability of the process. The costs associated with processing silicon molds are also compared to competing processing techniques. This technique has generated excellent results and has potential to become a major forming tool to fill the materials selection gap in MEMS and mesoscale component design. / by Matthew E. Rosenthal. / S.M.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/50627
Date January 1998
CreatorsRosenthal, Matthew E. (Matthew Eric), 1971-
ContributorsMichael J. Cima., Massachusetts Institute of Technology. Dept. of Materials Science and Engineering., Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format113 leaves, application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0175 seconds