Return to search

Antimicrobial Copper Iodide Materials

Environmental microorganisms are implicated as the causative agents in a significant portion of healthcare associated infections (HAI) and antimicrobial resistant infections (AMR), which result in increased costs and suffering around the world. Furthermore, common environmental microorganisms participate in microbiological degradation of materials and the bio-fouling of various systems. This also results in a tremendous amount of damage in many different materials and many different sectors. The focus of this dissertation was the development of an additive that could be easily added to common materials to make them self-disinfecting and to protect them from microbial damage. The ultimate goal was to develop an additive that could be added using standard techniques and without adversely affecting the final material. Cuprous iodide (CuI) was determined to be an ideal starting material for the development of improved antimicrobial materials because of its neutral appearance and high antimicrobial activity as compared to other silver and copper materials. It was found that the antimicrobial efficacy of CuI could be amplified if prepared as a small particle and especially in the presence of vinylpyrrolidone polymers. A comminution process was then developed to produce these small particles. By using select copolymers, various CuI small particles formulation were developed to be compatible with a variety of different matrices. The efficacy of these CuI containing matrices was dependent on the compatibility of the CuI formulation with the matrix. A variety of applications were demonstrated with good antimicrobial efficacy where the particles were easily added to the finished material with minimal or no change in appearance.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/612146
Date January 2016
CreatorsKrasnow, Nicholas Riordan
ContributorsUhlmann, Donald, Agrawal, Anoop, Raghavan, Srini, Keswani, Manish, Uhlmann, Donald
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0573 seconds