Return to search

Investigating coordinate network based films through mechanical and optical properties

Thesis: S.B., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2017. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Cataloged from student-submitted PDF version of thesis. / Includes bibliographical references (page 31). / Both biological and synthetic materials crosslinked via metal coordinate dynamic chemistry display interesting advanced behavior. In particular, coordinate networks have been shown to form self-healing, self-assembling, and stimuli-responsive behaviors through its tunable optical and mechanical properties as well as its ability to for dynamic networks. However, while the majority of research has focused on characterization of bulk coordinate networks, coordinate complexes have also been shown to be useful in molecular film formation [1 and 2]. This study investigates the mechanical and optical properties of tannic acid and 4 arm catechol polyethylene glycol based coordinate network films. It shows that these films can contribute to energy dissipation and undergo pH-induced optical shifts when used as coatings on soft hydrogels. It also provides evidence that the molecular architecture of the network formers may have considerable effect on the properties and behavior of coordinate network films. Ultimately this work lays the foundation for further investigation of the underlying mechanisms and engineering potential of coordinate network based films. / by Rebecca Anne Gallivan. / S.B.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/111257
Date January 2017
CreatorsGallivan, Rebecca Anne
ContributorsNiels Holten-Andersen., Massachusetts Institute of Technology. Department of Materials Science and Engineering., Massachusetts Institute of Technology. Department of Materials Science and Engineering.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format36 pages, application/pdf
RightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0046 seconds