Return to search

Commercial potential for thermal & magnetic sensitive polymer in drug delivery applications / Commercial potential for thermal and magnetic sensitive polymer in drug delivery applications

Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2008. / Includes bibliographical references (leaves 75-80). / Thermal and magnetically sensitive polymers are a new class of materials with unique properties suitable for applications in drug delivery. Specifically, these polymers can be combined with a drug reservoir to make a drug delivery device that can be triggered externally. Such a device could be implanted subcutaneously and allow for temporal control of drug release and localized delivery. Current experiments have shown that a prototype device is capable of delivering both small and large molecule drugs. Attractive medical applications for this technology were discovered and their respective markets examined. Additionally, the scientific literature and intellectual property in this field were analyzed for competing technologies that would hinder development of this invention. Novel attributes of this technology were also identified and specific competitive advantages made evident. To facilitate the commercialization of this novel technology, a business model has been proposed that identifies possible risks and provides strategies for overcoming them. Using this model, a timeline for future research and development has been constructed that traces the technology from its current state to a final product that can be launched commercially. The requirements for regulatory approval have also been investigated and a plausible manufacturing process has been established. Furthermore, a cost model and pricing analysis has been conducted to determine if a viable business proposition around this technology can be made. / by Jonathan M. Edward. / M.Eng.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/45958
Date January 2008
CreatorsEdward, Jonathan M. (Jonathan Mark)
ContributorsDaniel S. Kohane., Massachusetts Institute of Technology. Dept. of Materials Science and Engineering., Massachusetts Institute of Technology. Dept. of Materials Science and Engineering.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format80 leaves, application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.002 seconds