Return to search

Controlling microstructure of nanocrystalline thermoelectrics through powder processing

Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2014. / 220 / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 122-127). / Bismuth Telluride and its solid solutions are currently front running thermoelectric materials because of their high figure of merit. When processed via mechanical alloying to obtain nanocrystalline structures, their efficiency is increased dramatically, due to enhanced phonon scattering at grain boundaries. However, the excess free energy of these interfaces renders them inherently susceptible to grain growth, therefore there is a need for materials with enhanced thermal stability. Despite this, little is known about the relevant processing science of these materials with respect to mechanical alloying and powder consolidation. This shortcoming is addressed here via systematic study of the processing-structure relationships that govern these processing operations. Firstly, during mechanical alloying, the primary mechanism of mixing between elemental constituents is revealed, as well as the limitations to subsequent grain refinement. The resultant behaviour is unique in the literature on mechanical alloying, due to the unusual thermal and thermodynamic properties of the compound and its elements, rendering deformation-induced heating effects especially prevalent. Next, during sintering operations of the powders, the kinetics of grain growth and porosity evolution were studied. By quantifying these processes, a thermal budget map for the nanocrystalline compound is constructed, to allow predictive powder and guidance of both processing and device operation at elevated temperatures. Finally, based on the improved understanding in processing science and thermal stability of these materials, a new class of thermally stable composites is engineered, with improved thermal stability, and hence enhanced thermoelectric properties. / by Samuel A. Humphry-Baker. / Ph. D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/90085
Date January 2014
CreatorsHumphry-Baker, Samuel A
ContributorsChristopher A. Schuh., Massachusetts Institute of Technology. Department of Materials Science and Engineering., Massachusetts Institute of Technology. Department of Materials Science and Engineering.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format127 pages, application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0018 seconds